Cassin’s Auklet at-sea distribution and exposure to stressors such as ship-source oil pollution and microplastics

PICES, Yeosu, 23 October 2014
Patrick O’Hara
Canadian Wildlife Service - Environmental Stewardship Branch
Co-authors:

- Ken Morgan – Canadian Wildlife Service (EC)
- Jamie McDevitt-Irwin – Biology, University of Victoria, BC
- Jean-Pierre Desforges – Fisheries and Oceans Canada
- Peter S. Ross – Ocean Pollution Research, Vancouver Aquarium
- Sean Boyd – Science and Technology (EC)

Thanks also to:

- Norma Serra-Sogas – Geography, University of Victoria
- Allan Roberts - Bamfield Marine Sciences Centre
Spatial Risk Analysis Model

Risk = Likelihood x Consequence

Likelihood
of stressor

Consequence
of stressor should it occur
Cassin’s Auklet (CAAU)

- Long-lived/low reproductive rates
- ~55% global population breeds on Triangle Island
- Breeding: vulnerable to higher frequency smaller scale stressors
Cassin’s Auklet (CAAU)

- Long-lived/low reproductive rates
- ~55% global population breeds on Triangle Island
- Breeding: vulnerable to higher frequency smaller scale stressors

Triangle Island
Cassin’s Auklet (CAAU)

Current efforts in Canada to ensure CAAU conservation:
• Scott Island Marine National Wildlife Area (MWA)
• Review for designation for protection under Species at Risk Act (SARA)

Risk assessment:
• At-sea foraging distributions
• Stressors
Exposure for Cassin’s Auklet

At-sea survey data
- Ships of Opportunity
- 1995-2010
- Breeding (15 Mar – 31 Aug)
Exposure for Cassin’s Auklet

At-sea survey data
- Ships of Opportunity
- 1995-2010
- Breeding (15 Mar – 31 Aug)
Exposure for Cassin’s Auklet

At-sea survey data
- Ships of Opportunity
- 1995-2010
- Breeding (15 Mar – 31 Aug)

Radiotelemetry
- Triangle Island breeders
- 1999-2001

Random Forest

- Variables:
 - Response = Density
 - Temporally constant predictors
 - Latitudes/Longitudes
 - Proximity (colonies, shore, canyons, shelf break, sea mounts)
 - Bottom topography (depth, slope, aspect, rugosity)
 - Temporally variable predictors
 - SST, SST gradients, Chl$_a$, Sea-Surface-Height
 - Proximity to eddies
 - Years, Julian days
- Ensemble of 500 trees with minimum nodesize of 5
- Cross-validation techniques
 - Out Of Bag (OOB)
 - Random subsampling (30 iterations)
Random Forest

Prediction Accuracy

Out of Bag (OOB)

- Mean Standard Error (MSE) = 39.1
- Pseudo-$r^2 = 0.882$

Cross-Validation (20 iterations)

- MSE = 42.5 ± 2.2
- Pseudo-$r^2 = 0.867 \pm 0.038$
Microplastic distribution

Desforges et al./Marine Pollution Bulletin (2014)
Oily Discharges

Traffic as a proxy for likelihood
Oily Discharges

Traffic as a proxy for likelihood
Vessel tracks of known polluters

Photo courtesy of Ken Morgan
Polluter and CAAU
Conclusion

- Increased Consequence = CAAU aggregated breeding distributions makes them particularly vulnerable to coastal stressors
 - Likely exposed to microplastics – not clear how vulnerable/sensitive CAAU are
Conclusion

- Increased Consequence = CAAU aggregated breeding distributions makes them particularly vulnerable to coastal stressors
 - Likely exposed to microplastics – not clear how vulnerable/sensitive CAAU are
 - Highly sensitive to exposure to oil, large proportion of global population exposed, likelihood unclear as this is an episodic stressor
Conclusion

- Increased Consequence = CAAU aggregated breeding distributions makes them particularly vulnerable to coastal stressors
 - Likely exposed to microplastics – not clear how vulnerable/sensitive CAAU are
 - Highly sensitive to exposure to oil, large proportion of global population exposed, likelihood unclear as this is an episodic stressor
Conclusion

- Increased Consequence = CAAU aggregated breeding distributions makes them particularly vulnerable to coastal stressors
 - Likely exposed to microplastics – not clear how vulnerable/sensitive CAAU are
 - Highly sensitive to exposure to oil, large proportion of global population exposed, likelihood unclear as this is an episodic stressor

- Are current Canadian efforts to ensure their conservation sufficient?
 - Scott Island Marine MWA
 - Boundary designation
 - Enforcement legislation, policy, infrastructure
 - Species at Risk designation for protection
 - Trends dependent
 - Little precedent for protecting marine habitat
Conclusion

• Random Forest works well for CAAU (apparently)
 – Compare with other SDM techniques/ensemble modeling
 – Predict radiotelemetry (1999-2001)
 – Compare and predict satellite tracking (current)
Thank You!

감사합니다
Variable Importance

Variable Importance for CAAU

- Eddy_Dist
- OD_Grad
- CAAU_Dist
- Chl
- OD_Sld
- MSLA
- Terr_Rug
- Y_Coord
- X1000iso
- Shore_Dist
- SeaMtn_Dis
- OD_Slope
- Canyon_Dis
- SST_Grad
- X_Coord
- OD_Aspect
- julianDay
- SST
- Tidal_Curr
- Month
- OD_Mean

- Chl
- CAAU_Dist
- Eddy_Dist
- Canyon_Dis
- X1000iso
- Shore_Dist
- Terr_Rug
- OD_Grad
- Y_Coord
- OD_Sld
- X_Coord
- OD_Mean
- SeaMtn_Dis
- SST
- MSLA
- Tidal_Curr
- OD_Aspect
- OD_Slope
- SST_Grad
- julianDay
- Month

%IncMSE

4 6 8 10

0e+00 4e+05 8e+05

IncNodePurity
Partial Prediction Plots

Partial Dependence on "Eddy_Dist"

Partial Dependence on "Chi"

Partial Dependence on "OD_Grad"

Partial Dependence on "CAAU_Dist"

Partial Dependence on "Canyon_Dist"

Partial Dependence on "X1000iso"