A biological contribution to partial pressure of CO$_2$ in the western Arctic Ocean and Bering Sea

Futsuki, R., T. Hirawake2, A. Fujiwara2,3, T. Kikuchi4, S. Nishino4, D. Sasano5,6, M. Ishii5,6, H. Uchida4 and S. Saitoh2

*E-mail: futsuki@salmon.fish.hokudai.ac.jp

1Graduate School of Fisheries Sciences, Hokkaido University,
2Faculty of Fisheries Sciences, Hokkaido University,
3Arctic Environment Research Center, National Institute of Polar Research,
4Research and Development Center for Global Change, JAMSTEC,
5Global Environment and Marine Department, Japan Meteorological Agency,
6Oceanography and Geochemistry Research Department, Meteorological Research Institute

S9: Variability in advection and its biological consequences for Subarctic and Arctic ecosystems

PICES Annual Meeting 2014
Oct. 16-26, Yeosu, Korea
The ocean plays a crucial role in mitigating effects of perturbation to the climate system, sequestering 20 to 35% of anthropogenic CO\textsubscript{2} emissions (Khatiwala et al., 2009)

<Arctic Ocean>

Total sink of atmospheric CO\textsubscript{2} : 65-175 TgC yr-1

- Contributing 5-14% to the global ocean’s net uptake of CO\textsubscript{2} (Takahashi et al., 2002, 2009; Bates and Mathis, 2009)

Especially...

Chukchi Sea is a large ocean sink for CO\textsubscript{2} briefly in summer, sea ice-free period and contributes nearly 1/3 to 1/2 of the CO\textsubscript{2} sink in the Arctic (Bates et al., 2011a)

<Bering Sea>

Bering sea shelf shift from neutral CO\textsubscript{2} sink/source status in spring to strong oceanic sink for CO\textsubscript{2} by summer (Bates et al., 2011a)
Partial pressure of CO_2 (ρCO_2) vary with

1) Solubility change (temperature, salinity) → solubility pump
2) Vertical mixing (wind-induced, sea ice formation) → physical pump
3) Gas exchange at sea surface
4) Advection of other water masses and fresh water inflow
5) Phytoplankton uptake → biological pump

Seasonally significant
Recent Arctic environment

- Increase in flesh and heat water flux depends on increasing Bering Strait throughflow (Woodgate et al., 2012)
- Reduction of sea ice area in summer and earlier retreat of sea ice
- Shift in timing of phytoplankton bloom and change in annual primary production (e.g. Brown and Arrigo, 2012; Ji et al., 2013, etc...)

Rapid environmental change in the Arctic Ocean

The Arctic marine carbon cycle will likely enter a high dynamic state in coming decades, with large uncertainties in the exchange of atmosphere-ocean CO₂ (Bates et al., 2011b)
There are many researches focusing on relationship between $p\text{CO}_2$ and physical processes
Ex) Murata and Takizawa, 2003; Hauri et al., 2013, etc...

However

Few studies have focused on relationship between $p\text{CO}_2$ and biological processes
⇒ Thus, little is known about how much biological processes affect $p\text{CO}_2$

It’s important to clarify the biological contribution to $p\text{CO}_2$ for more understanding of air-sea CO$_2$ flux in the western Arctic and Bering Sea where environmental change is rapid
• To clarify biological contribution to pCO_2 in the western Arctic and Bering Sea
Materials & methods

In-situ and satellite data

Cruise data
R/V “Mirai” Arctic Cruise, 2012 (MR12-E03)
3rd Sep. – 17th Oct., 2012

In-situ and satellite data

- Partial pressure of CO$_2$ (pCO$_2$)
- Sea Surface Temperature (SST)
- Sea Surface Salinity (SSS)
- Chlorophyll a concentration (Chl.a)
- Mean wind speed
- Open water period

Physical
- Mean primary productivity

Biological
- Total Alkalinity (TA), Salinity (Sal), Dissolved Inorganic Carbon (DIC)

→ CTD bottle sampling data
Materials & methods

Data sampling and processing

pCO$_2$ [μatm], SSS [psu], SST [°C] and Chl-a [mg m$^{-3}$]

1st step: Seawater was pumped up from 4.5m below the sea surface.

pCO$_2$: Cavity Ring-Down Spectroscopy (CRDS), and SSS; SST; Chl.a: Continuous sea surface water monitoring system

Open water period (OP) [days]

Satellite derived sea ice concentration (SIC), SSMI/DMSP, 25km, Daily

The period from onset of ice retreat to observed day → The day that SIC is first below 10%

Primary Productivity [mg C m$^{-2}$ d$^{-1}$]

Satellite derived $a_{ph}(443)$, E_0, Z_{eu}, MODIS/Aqua, 9km, Daily

Calculated by the algorithm using phytoplankton light absorption coefficient ($a_{ph}(\lambda)$) (Hirawake et al., 2011) and optimized by a parameter in Arctic region

Wind speed [m s$^{-1}$]

NCEP/North American Regional Reanalysis (NARR), Wind speed at 10m above sea level, 32km 3 hours
Materials & methods

Cluster analysis

pCO_2 & environmental parameters

- SST
- SSS
- Chl.a

Open water period (OP)
Mean wind speed during OP
Mean primary productivity during OP
$\Delta pCO_2 (pCO_2\text{sea} - pCO_2\text{air})$

Normalized: $\frac{(X - \bar{X})}{\sigma}$

Classified into 6 regions

1. Bering sea basin
2. Northern Bering & central Chukchi Sea
3. Northern shelf of Chukchi Sea
4. Southern Chukchi Sea
5. Southern Bering Strait
6. Northern Chukchi Sea (basin & slope)
Materials & methods

Estimation method of biological contribution

Water mass analysis

\[
\begin{align*}
 f_{\text{Bering}} + f_{\text{River}} + f_{\text{Ice}} &= 1 \\
 f_{\text{Bering}} S_{\text{Bering}} + f_{\text{River}} S_{\text{River}} + f_{\text{Ice}} S_{\text{Ice}} &= S \\
 f_{\text{Bering}} T A_{\text{Bering}} + f_{\text{River}} T A_{\text{River}} + f_{\text{Ice}} T A_{\text{Ice}} &= T A
\end{align*}
\]

※This analysis is not available in south of Bering Strait due to no CTD sampling data

<table>
<thead>
<tr>
<th>End-member</th>
<th>End-member value</th>
<th>(Cai et al., 2010)</th>
<th>Sal. [psu]</th>
<th>TA [µmol kg(^{-1})]</th>
<th>DIC [µmol kg(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bering Sea water</td>
<td></td>
<td></td>
<td>33.218</td>
<td>2257.9</td>
<td>2161</td>
</tr>
<tr>
<td>River water</td>
<td></td>
<td></td>
<td>0</td>
<td>1100</td>
<td>1150</td>
</tr>
<tr>
<td>Sea ice melt water</td>
<td></td>
<td></td>
<td>5</td>
<td>450</td>
<td>400</td>
</tr>
</tbody>
</table>

evaluated 3-component fraction of end-members \((f_{\text{Bering}}, f_{\text{River}}, f_{\text{Ice}}) \)
Results & Discussion

Spatial distribution of $\Delta p\text{CO}_2$

- Most regions had CO$_2$ sink condition except southern Bering strait
- Spatial variability of $\Delta p\text{CO}_2$ was significant (-200 < $\Delta p\text{CO}_2$ < 160)

![Graph showing spatial distribution of $\Delta p\text{CO}_2$](image)

Significant CO$_2$ sink condition

CO$_2$ source condition

Neutral CO$_2$ sink/source condition

$\Delta p\text{CO}_2$ (μatm)
Results & Discussion

Biological contribution

- Northern & central shelf of Chukchi Sea (Cluster 2, 3)
 ⇒ Large biological contribution: 47%(2.6), 39%(8)
- Southern Chukchi Sea (Cluster 4)
 ⇒ Not so large biological contribution: 20%(24)
- Southern Bering Strait and northern Chukchi Sea (Cluster 5, 6)
 ⇒ No biological contribution: 1%(39), 0%(12)

CO$_2$ release via organic carbon respiration

CO$_2$ uptake

CO$_2$ release via organic carbon respiration

Expected DIC (μmol kg$^{-1}$)

Biological drawdown

In-situ pCO$_2$ [μatm]

Cluster

Biological drawdown

Expected pCO$_2$ [μatm]
Significant low $\Delta p\text{CO}_2$ region

2. Northern Bering & central Chukchi Sea
 $\Rightarrow \Delta p\text{CO}_2 : -131(39) \text{ μatm}, 47%$
 - Relatively high mean primary productivity (702 mg C m$^{-2}$ d$^{-1}$)
 - Relatively weak wind (5.55 m s$^{-1}$)
 - Less stratification ($f_{\text{sim}} = 1\%$)

3. Northern shelf of Chukchi Sea
 $\Rightarrow \Delta p\text{CO}_2 : -109(39) \text{ μatm}, 39%$
 - Relatively high Chl.a (0.9 mg m$^{-3}$)
 - Relatively weak wind (5.04 m s$^{-1}$)
 - Less stratification ($f_{\text{sim}} = 8\%$)

In-situ biological pump and/or advection of low $p\text{CO}_2$ water after blooming allowed significant CO_2 sink condition in these regions

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Chl.a Median(IQR)</th>
<th>mean_PP Median(IQR)</th>
<th>mean_wind Median(IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster1</td>
<td>0.60(0.44)</td>
<td>605(94)</td>
<td>7.33(0.21)</td>
</tr>
<tr>
<td>Cluster2</td>
<td>0.53(0.50)</td>
<td>702(155)</td>
<td>5.55(0.60)</td>
</tr>
<tr>
<td>Cluster3</td>
<td>0.90(0.50)</td>
<td>450(124)</td>
<td>5.04(0.55)</td>
</tr>
<tr>
<td>Cluster4</td>
<td>1.40(0.95)</td>
<td>807(67)</td>
<td>6.46(0.29)</td>
</tr>
<tr>
<td>Cluster5</td>
<td>0.55(0.43)</td>
<td>624(139)</td>
<td>5.59(0.45)</td>
</tr>
<tr>
<td>Cluster6</td>
<td>0.09(0.04)</td>
<td>382(170)</td>
<td>5.52(0.34)</td>
</tr>
</tbody>
</table>
Neutral ΔpCO_2 region

4 Southern Chukchi Sea
⇒ $\Delta pCO_2 : -57(33) \mu$atm, 20%
- High primary productivity (807 mg C m$^{-2}$ d$^{-1}$)
- High chl.a (1.40 mg m$^{-3}$)
+ Significant stratification by sea ice melt water ($f_{SIM} = 10\%$)
+ Relatively strong wind (6.46 m s$^{-1}$)

6 Northern Chukchi Sea
⇒ $\Delta pCO_2 : -23(13) \mu$atm, -1%
± Low primary productivity (382 mg C m$^{-2}$ d$^{-1}$)
± Low Chl.a (0.09 mg m$^{-3}$)
+ Significant stratification by sea ice melt water ($f_{SIM} = 16\%$)

Shallow mixed layer depth and strong stratification by sea ice melted-water allowed relatively quick re-equilibration with atmosphere (Cai et al., 2010)
Conclusion

- The northern Bering, central & northern shelf of Chukchi Sea (Cluster 2, 3) had significant CO₂ sink condition and biological CO₂ uptake largely contributed to $p_{CO₂}$.
- The southern & northern Chukchi Sea (Cluster 4, 6) where strongly stratified by sea ice melt water had relatively neutral CO₂ sink/source condition, and biological contribution to $p_{CO₂}$ was not so large or nothing.
If further sea ice reduction and earlier ice retreat will occur (e.g. IPCC AR5; Brown and Arrigo, 2012), and annual net primary productivity will increase (e.g. Arrigo et al, 2008; Pabi et al, 2008); two possible scenarios are expected:

- CO$_2$ sink will be enhanced in the region where primary productivity increase

- Strong and broad stratification may occur by further sea ice reduction and earlier ice retreat, and allow relatively quick re-equilibration with atmosphere and prevent CO$_2$ uptake from atmosphere to the ocean.
Thank you
for your attention