Winter mortality of Okhotsk Sea pink salmon in the ocean

Alexander Zavolokin & Elena Strezhneva

TINRO-Center, Vladivostok, Russia
Commercial catch of Pacific salmon by Russia

- Chinook
- Coho
- Sockeye
- Chum
- Pink

About 80% of Russian pink salmon originated from Okhotsk Sea

Pink salmon

Okhotsk Sea

Bering Sea

Pacific Ocean

Goryainov 2008

- spawning rivers
Composition, biomass and feeding migrations’ duration of juvenile Pacific salmon in the Russian economic zone, average estimations for 1980-2006 (Shuntov and Temnykh 2008)

Main feeding area for juvenile pink salmon
Survey areas for long- and short-term forecasting of Okhotsk Sea pink salmon

Long-term forecasting (7-10 months in advance)

Forecast correction (2-8 weeks in advance)
Survey areas for long- and short-term forecasting of Okhotsk Sea pink salmon

October – early November

Long-term forecasting (7-10 months in advance)
More useful for fishermen, but less precise

Temnykh 2013
Forecast correction (2-8 weeks in advance) More precise, but late for fishermen
Survival rates of pink salmon belonging to the Sea of Okhotsk stocks during period from fall surveys till prespawning approaches to coasts, 1989-2010 (Radchenko et al., 2013)
How can we improve long-term forecasting of pink salmon returns?

Predictors of pink salmon winter survival

Okhotsk Sea

October – early November

Bering Sea

June – early July

Pacific Ocean

X

500,000 USD
Critical Size, Critical Period Hypothesis (Beamish and Mahnken 2001)

The distribution of the average circuli spacing of the first 10 saltwater circuli from (a) ocean-age-0 coho salmon collected in the Strait of Georgia in September and November, 2000 and (b) ocean-age-1 coho salmon collected in March, July, August, and September in the Strait of Georgia and from Chilliwack and Big Qualicum hatcheries. (Figure from Beamish et al. 2004)

Relative frequencies of scale radius length to circuli 3, 6, 9, 12, and 15 for hatchery pink salmon juveniles (dotted lines) and individuals of that cohort returning the following year as mature adults (solid lines). (Figure from Moss et al. 2005)
Goal:

to test the hypothesis of critical size and critical period for Sea of Okhotsk pink salmon, and to evaluate the possibility of using the data on the growth and body size of juveniles for predicting their returns
Distribution and abundance of 2007 and 2008 pink salmon generations in the Okhotsk Sea and the Pacific Ocean

- **Fall 2007**
 - Approximately 1,000,000 individuals
 - Okhotsk Sea

- **Fall 2008**
 - Approximately 1,000,000 individuals
 - Okhotsk Sea

- **Summer 2008**
 - 275,000 individuals (28%)
 - Pacific Ocean

- **Summer 2009**
 - 608,000 individuals (61%)
 - Pacific Ocean
Scale measurements of juvenile and adult pink salmon caught in fall in the Okhotsk Sea and in summer in the Pacific Ocean.
Average circuli spacing of the first 3, 6, 9 and 12 circuli from pink salmon of 2007 and 2008 generations

2007 generation

2008 generation

- juvenile pink salmon (fall)
- maturing pink salmon (summer)
Average circuli spacing of maturing pink salmon in the second year of life

Second year growth was similar in 2008 and 2009
Changes in body size of juvenile pink salmon and their mortality from fall till approach to coast

$r = 0.74, p < 0.01$
Changes in body size of juvenile pink salmon and their mortality from fall till approach to coast

EVEN YEARS
Dominance of relatively big juveniles

ODD YEARS
High abundance of relatively small juveniles

\[r = 0.74, \ p < 0.01 \]
Changes in body length of juvenile pink salmon and their mortality from fall till approach to coast

Separate analyses of even and odd years improve fitting
Mean body length of pink salmon which were recently wounded by Daggertooth or Lancetfish in comparison with non-wounded fish.

2012, Northwestern Pacific Ocean

Body length, cm

<table>
<thead>
<tr>
<th>Fish state</th>
<th>Mean</th>
<th>Mean±SE</th>
<th>Mean±1.96*SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>safe</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>recently wounded</td>
<td>41</td>
<td>41</td>
<td>41</td>
</tr>
</tbody>
</table>

Mean body length of pink salmon which were recently wounded by Daggertooth or Lancetfish in comparison with non-wounded fish.
Conclusion

✓ critical size and critical period hypothesis is confirmed for Sea of Okhotsk pink salmon

✓ data on body size of juvenile pink salmon can be useful for long-term forecasting of their returns
Thank you!