Anomalously low crustacean zooplankton production rates along the west coast of Vancouver Island in the spring of 2015

Akash R. Sastri1, John F. Dower2, Theresa Venello2, Aidan Neill2, Karyn D. Suchy2, Moira Galbraith3, Kelly V. Young3, R. Ian Perry4

1 Ocean Networks Canada, University of Victoria, Victoria, BC, Canada
2 University of Victoria, Victoria, BC, Canada
3 Fisheries & Oceans Canada, Sidney, BC, Canada
4 Fisheries & Oceans Canada, Nanaimo, BC, Canada
Cold regimes characterized by higher northern zooplankton biomass

Poor salmon survival linked to anomalously low biomass of northern zooplankton

1. ‘Northern’ vs. ‘Southern’ biomass \approx \text{cold vs. warm}

2. Temporal patterns influence higher trophic level survival (Mackas et al. 2007)

3. Difficult to translate biomass patterns to quantitative estimates of food web efficiency

In situ Zooplankton Productivity Estimates

- Calculations of transfer efficiency demand secondary production rate estimates
- Weight-specific growth rates for dominant copepod and euphausiid species (GOA, Oregon coast, Stn.P)
- No historical community-level measurements in Canadian Pacific
Methods: Zooplankton Production Rates

Chitobiase Method:

1) Enzyme breaks down chitin in old exoskeleton and recycles chitin for synthesis of new exoskeleton

2) Chitobiase is liberated into water when animal moults
Methods: Zooplankton Production Rates

Chitobiase Method:

1) Enzyme breaks down chitin in old exoskeleton and recycles chitin for synthesis of new exoskeleton

2) Chitobiase is liberated into water when animal moults

3) Activity varies with individual body size, developing biomass and increment of growth for the community

(Sastri & Dower 2009 Mar. Ecol. Prog. Ser.)
Methods: Zooplankton Production Rates

Chitobiase Method:

1) Enzyme breaks down chitin in old exoskeleton and recycles chitin for synthesis of new exoskeleton

2) Liberated into water when animal moults

3) Activity varies with individual body size, developing biomass and increment of growth for the community

4) The rate of production of the enzyme in the water = biomass production rate

5) Measure enzyme decay rates assuming balance between production & degradation
A Field Example (Gulf of Alaska: July 2009)

Production rate = ΔB / T_{CBA}

= 2.41 mg C m^{-3} d^{-1}
1. Sampling July’08, July’09, and October’09

2. Production rates varied in space (0.15-4 mg C m\(^{-3}\) d\(^{-1}\))
Broad-scale production rate patterns

1. Sampling July’08, July’09, and October’09

2. Production rates varied in space (0.15-4 mg C m\(^{-3}\) d\(^{-1}\))

3. Production rates varied significantly with temperature and phytoplankton biomass ($r^2=0.67$, $p<0.001$)

1. Chitobiase activity and decay dynamics measured at several stations

2. Included on- and off-shelf stations

3. Up to 2 trips per year (June, September)

4. 2005 – spring/summer (6 Stns/cruise)

5. 2009-2011 – summer (6 Stns/cruise)

6. 2015 – spring/summer (8 Stns/cruise)
Zooplankton Production Rates: 2005

South VI: Production rates greater on shelf and offshore in June relative to September (very low)

North VI: No particular inter-cruise differences on or off-shelf
1. Shelf production typically greater in the south

2. No systematic N-S trend for offshore stations

Warm shelf waters 2014/2015

1. Sea-floor CTD on shelf at 96m

2. Captures seasonal pattern of upwelling and downwelling water onto shelf

3. Weak downwelling in 2013/2014 winter (blob development)

4. Warm (~2°C>) fresher water downwelled onto shelf 2014/2015 winter

5. Atypically warm on southern shelf through spring/early summer
1. Production rate low and limited to the upper 10m
2. No north-south trend
3. Rates ~0 in June, marginally higher in September
4. Production rate elevated on southern shelf but ‘0’ off shelf in Sept.
Year-specific zooplankton production rates

- **WARM**
- **COOL**

BPR (mg C m\(^{-2}\) d\(^{-1}\))

Year/Cruise:
- Jun'05
- Sep'05
- Sep'09
- Sep'10
- Sep'11
- Jun'15
- Sep'15
Biomass patterns: Copepods

Southern species anomaly:
- High in 2005 & 2015
- Positive but low 2010
- Negative in 2009 & 2011

Northern species anomaly:
- Low in 2005 & 2015
- Positive in 2010
- Positive in 2009 & 2011
Biomass patterns: Gelatinous Zooplankton

Ctenophore anomaly:
• Very high in 2015
• Positive in 2005 & 2010
• Negative in 2009 & 2011

Doliolid anomaly:
• Very high in 2015
• Positive in 2005 & 2009
• Negative in 2010 & 2011
Patterns of production rates and zooplankton biomass

Rank correlations VS median BPR:

- **Southern** = -1.0, p < 0.001*
- **Ctenophores** = -0.9, p < 0.05*
- **Northern** = 0.8, p = 0.10
- **Doliolids** = -0.3, p = 0.63

1. Temporal patterns of southern copepod and ctenophore biomass anomaly similar to crustacean zooplankton production rates
1. Production rate in June 2015 ~0 throughout the WCVI

2. Biomass (and composition) significantly altered

3. Warm conditions during the preceding winter probably to blame

4. Production rates slightly improved in September 2015, yet still very low
