Comparison between Surface Cyclonic and Anticyclonic Eddies along the Kuroshio in the Northwestern Pacific Ocean

Dandi Qin

Co-author: Jianhong Wang, Changming Dong, Yu Liu
Nanjing University Of Information Science & Technology

2015.10.21
PICES_S5, Qingdao
Study Area

117° E-132° E,
24° N-41° N

Excluding the Sea of Japan and waters shallower than 50m.
Eddy Kinetic Energy (EKE)

\[u' = -\frac{g}{f} \left(\frac{\partial h'}{\partial y} \right); \ v' = \frac{g}{f} \left(\frac{\partial h'}{\partial x} \right), \]

\[EKE = \frac{1}{2}(u'^2 + v'^2), \]

✓ The EKE is calculated from the velocity anomalies with respect to the mean time.
✓ A majority of the EKE is contributed by the individual eddies.

Spatial distribution of the 90-day high-passed average EKE over the period of 1993–2010.
Eddy Data Set

- Time, Location
- Intensity
- Size
- Polarity (cyclonic or anticyclonic)
- Trajectory

From
http://web.atmos.ucla.edu/~cdong/Global_Eddy_Data_SSHA/
Data

- Multiple-satellite-merged SSHA data from AVISO
 1993.1-2010.12, 7 days, $1/3^\circ \times 1/3^\circ$.
- CCMP sea surface wind vector data
 1993.1-2010.12, 6 hours, $1/4^\circ \times 1/4^\circ$.

Method

- A velocity geometry-based automated eddy detection scheme
 (Nencioli et al., 2010)
Introduction

Data & methods

Eddy Analysis

Summary
Eddy Analysis

7716 eddies based on each snapshot = 1096 eddy tracks

CEs ≈ AEs

Spatial distribution of average eddy number (lifetime ≥ 4 weeks) over 1° × 1° bins for CEs (a) and AEs (b).
Mean **lifetime** is 6.9 weeks for CEs and 7.2 weeks for AEs. Mean **radius** is 56 km for CEs and 54 km for AEs.

Histograms of (a) eddy lifetime and (b) eddy size (radius, unit: km).
Eddy Analysis

Size: Eddies are much larger east of the Ryukyu Islands than other parts of this region.

Spatial distribution of eddy size (radius, unit: km) for CEs (a) and AEs (b).
Eddy Analysis

Mean normalized relative vorticity: 0.1 for CEs and -0.1 for AEs.
Eddy Analysis

Movement trajectories of four eddies as examples
Eddy Analysis

Eddy movement: Northeast for CEs and AEs.

The eddy movement is most likely due to both the β effect and advection of background current.

Zonal and meridional average propagation speeds of eddies (lifetime ≥4 weeks).
Eddy Analysis

Spatial distribution of eddy generation number (lifetime ≥ 4 weeks).

Spatial distribution of eddy termination number (lifetime ≥ 4 weeks).

The advection of eddies by the Kuroshio.
AT agrees better with the **CE generation** than the AE generation.

Interannual and seasonal variations of the surface along-stream transport (AT, black lines, unit: $10^4\text{m}^2/\text{s}$) of Kuroshio (a, b), eddy generation and termination numbers (lifetime ≥ 4 weeks, c–f) in the marked area.
Eddy Analysis

CE ~ Kuroshio;
AE ~ Kuroshio, disturbance from the open sea, and wind stress curl due to the Ryukyu Islands.

Two example snapshots of wind stress curl in the summer and winter: at UTC-12:00 August 3 (a) and UTC-00:00 January 4 (b).
Summary

• This study investigates an 18-year dataset of sea surface geostrophic vector anomalies to detect cyclonic and anticyclonic eddies for the East China Sea and the Kuroshio in the Northwestern Pacific Ocean.

• More than one thousand eddy tracks are counted by a velocity geometry-based automated eddy detection scheme, it is found that the number and lifetime of the cyclonic and anticyclonic eddies are similar in the sea area, and that there are more eddies adjacent to both sides of Kuroshio Current.

• East of the Ryukyu Islands cyclonic eddies are much larger and stronger than anticyclonic eddies. Along the Kuroshio, more cyclonic eddies are generated on its western side and more anticyclonic eddies on its eastern side, and most eddies propagate northeastward following the direction of the Kuroshio.

• Statistical analysis indicated there are more eddies having diameters between 40-50 km than any other size, and an eddy duration of 4-5 weeks is most common.

• The current magnitude and velocity side-shear of the Kuroshio cause flow instabilities that lead to eddy generation; thus the variation of the Kuroshio transport is one of the major mechanisms of eddy generation.

• Other factors, including topography and seasonal flow circulations during monsoon, also impact cyclonic and anticyclonic eddy generation, but the genesis mechanisms are complex.
References

Thank you for listening!