Oil spill trajectory prediction using the GNOME model and satellite images

Yongliang Wei, Zeyan Tang and Jianqiang Liu
2015.10.15
Contents

1. Introduction
2. Oil spill modeling
3. Impacts of data resolution
4. Summary
1. Introduction

- Marine oil spill

 - Serious threat to marine environment and ecosystem
 - Numerous costs to cleanup
 - 2010: Deepwater Horizon (Mexico Bay, USA)
 - 2011: Penglai 19-3 (Bohai Sea, China)
Marine oil spill by remote sensing

1. Optical remote sensing

HJ-1-B CCD camera on June 11

Available in daytime
2. Microwave remote sensing

• Synthetic Aperture Radar (SAR)
• Side-look, active, imaging radar
• Day/night, all weather condition
• Backscattered radar cross section through Specular & Bragg resonant mechanism

Bragg resonant

Specular
Oil spill look-alikes in SAR image

- Low wind speed
- Organic films
- Sea ice, …

SAR Marine User manual, 2004
Two questions related to oil spill remote sensing

1. Oil spill detection
2. Trajectory prediction
 GNOME model

- General NOAA Operational Modeling Environment
- By NOAA/Emergency Response Division
- Free software

- Gasoline
- Kerosene/jet fuels
- Diesel
- Fuel oil #4
- Medium crude
- Fuel oil #4
- Non-weathering
• ‘Splot’: a volume of spilled oil
• Track oil using Lagrangian method

\[\bar{L} = \bar{L}_0 + \int_{t_0}^{t_0+\Delta t} V_i \{x(t_0), y(t_0), t_0\} dt \]

• Driving forces:
 surface winds and currents

• Output:
 ✓ Best Guess Solution
 ✓ Minimum Regret Solution
2. Oil spill modeling

Satellite images and GNOME: Penglai19-3
- ENVISAT-ASAR
- HJ-1 CCD

 GNOME settings:
Current: NCOM (Navy Coastal Ocean Model), 0.125° × 0.125°, 3-hour
Wind: ASCAT (Advanced Scatterometer), 0.25° × 0.25°, 1-day
Start time: 2011/06/11 02:00 UTC
Model time interval: 1 hour
Oil type: Medium crude

Xu, Q., et al., 2013
Oil spills extracted from satellite images

Xu, Q., et al., 2013
Newly released
3. Impacts of data resolution

- Data with different resolutions from various sources
- Remote sensing dataset increase rapidly
- Remote sensed current and wind data usually have low resolutions
Satellite images and GNOME: Deepwater Horizon
• ENVISAT-ASAR

 GNOME settings:
Current: NCOM (Navy Coastal Ocean Model)
Wind: ECMWF (European Center for Medium-Range Weather Forecasts)
Start time: 2010/04/22 00:00 UTC
Model time interval: 1 hour
Release amount: 5000 barrels/day
Oil type: Non-weathering
<table>
<thead>
<tr>
<th>Data Resolution</th>
<th>Current</th>
<th>Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial</td>
<td>0.125° × 0.125°</td>
<td>0.5° × 0.5°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25° × 0.25°</td>
</tr>
<tr>
<td>Temporal</td>
<td>3-hour</td>
<td>6-hour</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12-hour</td>
</tr>
<tr>
<td>Date</td>
<td>Time</td>
<td>Date</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>20100426</td>
<td>155843 UTC</td>
<td>20100429</td>
</tr>
</tbody>
</table>

Legend

- 20100426
- 20100429
- 20100502
Wind: 6-hour, 0.125° vs 0.25°

 GNOME output: 20100426 1600 UTC
Wind: 6-hour, 0.125° vs 0.5°

Finer resolution shows more details
Wind: 6-hour vs 12-hour, 0.125°

Difference: 20 km
Wind: 6-hour, 0.125°, BGS vs MRS
Wind: 6-hour, 0.125°, 0.25°, 0.5°, MRS
Wind: 6-hour, 0.125°, BGS vs MRS

 GNOME output: 20100429 0400 UTC
Wind: 6-hour, 0.125°, BGS vs MRS

GNOME output: 20100502 0400 UTC
A problem:
A significant difference between SAR imaged and GNOME predicted locations

Possible reasons:
1. The initial oil spill location on 20100422 is not clear, as well as the surface distributions of oil spill on the following days;
2. Outside interferer;
3. Uncertainties of driving forces
GNOME settings:

Current: NCOM, 0.125°, 3-hour

Wind: ECMWF, 0.125°, 6-hour

Start time: 2010/04/26 16:00 UTC

Model time interval: 1 hour

Amount already released: 15000 barrels

Release amount: 5000 barrels/day

Oil type: Non-weathering
Wind: 6-hour, 0.125°, BGS vs MRS

Legend
- 20100429
- from0426-20100429-6hr0.125-BGS
- from0426-20100429-6hr0.125-MRS
Wind: 6-hour, 0.125°, BGS vs MRS

 GNOME output: 20100502 0400 UTC
4. Summary

- GNOME can predict oil spill trajectory with reasonable accuracy;
- A finer spatial resolution can give more details on predicted trajectories;
- A finer temporal resolution can give more accurate predicted trajectories;
- The combination of oil spill location retrieved from satellite images and GNOME can produce more accurate results
- Current with different resolutions will be tested in future
Thank you very much!