Delivering quality multi-parameter data from on-line monitoring network in estuaries and bays: a case study in the Bohai Sea

Zhifeng ZHANG

National Marine Environmental Monitoring Center, SOA

2016.11
Outline

- The on-line monitoring network in the Bohai Sea
- A node in the Liaohe river estuary
- Summary and outlook
1.1 Brief of the Bohai Sea

Location and overview

- semi-enclosed marginal sea of the NW Pacific with 77 000 km2
- divided in four parts: Liaodong Bay, Bohai Bay, Laizhou Bay and the central part
- connects to the Yellow Sea with the Bohai Strait
1.2 Its problems

- High eutrophication level in coastal waters
 - high DIN and phosphate concentration
 - regions with high eutrophication level ($E > 3$): all the three bays and Dalian coastal area

![Map of coastal areas with eutrophication levels](image)

$$E = \frac{[COD] \times [DIN] \times [DIP]}{4500} \times 10^6$$

- 2015 National Marine Environment Quality Report
Increasing pollutant discharges

- more than 80% pollutants are from land-based discharge
 - 80% of pollutants discharged into the sea are through rivers;
 - among which, NP agriculture sources contribute to 56% TN, 84% TP

Contribution to TN Flux to Bohai Sea

- Riverine: 6.03%
- Direct Discharge: 3.29%
- Coastal Zone: 1.82%
- Atmosph. Sedim.: 0.05%
- Mariculture: 88.82%

Land-based discharging sources for:

- TN
 - Industry: 10%
 - Municipal: 34%
 - Farming: 32%
 - Livestock: 24%

- TP
 - Municipal: 16%
 - Farming: 15%
 - Livestock: 69%
1.3 Overview of the on-line monitoring network

- Land-based stations, buoys with different sensors
Outline

- The on-line monitoring network in the Bohai Sea
- A node in the Liaohe river estuary
- Summary and outlook
2.1 Why Liaohe river estuary

Particularities

- the biggest river in the Liaodong Bay carrying high N and P fluxes into the sea, resulting in high eutrophication level of the estuary and adjacent
- a typical North China river with **seasonal runoff pattern** and **high turbidity** in its maritime section
2.2 The Liaohe on-line monitoring station

- Synchronized observation of pressure-effect
 - end of the maritime section of Liaohe: land-based station → get the pollutant discharge
 - mouth of Liaohe: buoys → monitor the water quality
Advantages of land-based on-line monitoring station

- stable, flexible and sustainable
- easy to obtain reliable chemical data via the application of wet chemistry method:
 - DIN
 - Phosphate
 - TN
 - TP
 - VPCs,
 - …
Non-immersive segmented-flow detection

- During detection (5~10min): water sample segmentally pumped from the river to the sensors
- Between detections (3~4h): pipelines rinsed and evacuated, sensors non-immersed in water sample
- Non-immersive segmented-flow detection

- (1) monitoring all layers
- (2) anti bio-fouling
2.3 Nutrient sensor adjustment

- (1) Wet chemical method: improve sensor performance with additional filter

- Observations from sensors (25μm filter) comparing to laboratory detection results
 - Filter membrane used in the lab.: 0.45μm (HY/T 147.1-2013)
 - Sensors got lower value (-20%~40% average), poor relativity

suspended particles in the water sample significantly affects the performance of the sensors!
Observations from sensors (25µm filter) comparing to laboratory detection results

- Filter membrane used in the lab.: 0.45µm (HY/T 147.1-2013)
- Sensors got lower value (-20%~40% average), poor relativity

suspended particles in the water sample significantly affects the performance of the sensors!
Adjustment: 5μm filter plus 25μm filter before detection

- The performance of the sensors of NO₃-N and PO₄-P improved: recoveries on calibration curve >90%; average discrepancy < 20% compared to Lab. detection

0.45 μm filter was NOT applicable for on-line filtration because of filter clogging.
(2) Optical sensors performance adjustment

- Concentration of nitrate, nitrite and other chemicals are directly detected by **full spectrum analysis**

Advantages: no wet chemical reaction
Defects: suspended particles affected
- Adjustment: optical length of the full spectrum sensor
 - 20mm optical length: high sensitivity, high relative errors
 - 5mm optical length: low sensitivity, low noise, better performance
2.4 The on-line monitoring on the river runoff

Difficulties

- The relationship among water level, velocity and runoff is not stable

 ① Seasonal variable runoff, controlled by a rubber dam
 ② Irregular river-bed with bumps, prevents the effective use of the slope ADCP
 ③ Irregular bathymetry with shallow water
(1) On-line monitoring plan

- Long-term vertical profile: Flowquest 1000 ADCP
- Long-term horizontal profile: Sontek SL 500 ADCP
- Short-term surface, middle layer, bottom point current: Infinity-EM AEM USB
- Short-term cruise survey: TRDI Stream ADCP

![Diagram of monitoring plan](image-url)
(2) Runoff calculation

Runoff is calculated with following equation

\[Q = \omega V_m \]

\(V_m \) is the mean velocity, \(\omega \) is section area.

To get \(V_m \), the regression \(a, b \) have to be decided with following equations

\[V = C + aV_f + bV_h \]

\[V = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}, \quad V_f = \begin{bmatrix} v_{f1} \\ v_{f2} \\ \vdots \\ v_{fn} \end{bmatrix}, \quad V_h = \begin{bmatrix} v_{h1} \\ v_{h2} \\ \vdots \\ v_{hn} \end{bmatrix} \]

\(V_f \) and \(V_h \) are velocities measured by AEMs and FL 1000K, \(V \) are velocities measured by Stream ADCP.
(3) The current distribution during ebb tide and flood tide
(4) Runoff comparison between On-line monitoring and cruise observation

(5) The runoff results

- 250 m3/s during ebb tide
- 100 m3/s during flood tide
Outline

- The on-line monitoring network in the Bohai Sea
- A node in the Liaohe river estuary
- Summary and outlook
3.1 What we learn from Liaohe river station

- The advantages in deploying land-base station are
 - stable platform for sensors ensuring better data quality
 - easy for maintenance, prevent bio-fouling

- Biological & chemical parameters on-line monitoring in rivers
 - more filters procedure will minimize the effects of contamination and improve the data quality
 - Trios OPUS optical sensors with shorter optical length is more suitable for measuring nitrate concentration in rivers with high turbidity

- On-line monitoring on the river outfall
 - Multiple observation methods are required for on-line monitoring on the river runoff when the river transverse section is irregular
3.2 Suggestions for QA/QC protocol of sensors

- **Performance test of sensors**
 - newly recruited/renewed: calibration curve, detection limit, recovery and span shift
 - Routine maintenance monthly: calibration curve, recovery, accuracy, precision
 - Comparison tests seasonally: On-line monitoring vs. Laboratory method

![Diagram showing the process of QA/QC protocol of sensors]

- Get samples automatically
 - Sensor I
 - Sensor II
 - On-line observation I
 - On-line observation II
 - Statistic test
 - Relativity test
 - Correlation test
 - Significance test...
Weekly routing inspection
- status of the on-line monitoring platform hardware
- abnormal records of the monitoring process

Monthly maintenance
- replenishment of chemical reagents
- rinsing the pipelines and detection cells
- cleaning the sensors and filters and so on…

Before

After
3.3 Outlook

- **Further improvement of the sensors’ performance**
 - Integrate wet chemical method and full spectrum sensors
 - Dissolved nutrients \rightarrow TN and TP

- **Improve the accuracy of the on-line monitoring system on the river outfall**
 - Establish velocity-water level-runoff correlation in different seasons
 - On-line deployed of the seabed based observation platform

- **Improve the synchronization of land-based station and buoys**
 - Comparison between sensors in surface water and sea water
 - On-line monitoring data into numerical model to create public service product
Thanks