A comparison of zooplankton secondary production in a high nutrient low chlorophyll (HNLC) and seasonally productive regions in the North Pacific

Lian E. Kwong1, Natalie Mahara1, Evgeny A. Pakhomov1,2

1Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada

2Institute of Oceans and Fisheries, University of British Columbia, Vancouver, Canada
Importance of zooplankton
Production

• The amount of tissue or biomass generated in a certain area within a period of time (Rigler and Downing, 1984)

\[\text{Production} = \text{Biomass} \times \text{Growth} \]

• Primary Production
• Secondary Production
Secondary (Zooplankton) Production

- Estimates of secondary (zooplankton) production are generally limited to certain species, groups or sizes of zooplankton
- Traditional methods: Ecological method, cohort method, physiological method, egg production method, empirical models, biochemical models
Chitobiase technique

• Direct measure of crustacean productivity in the water column by measuring crustacean moulting enzyme (chitobiase) decay – Dower lab (UVIC – Sastri, Suchy, et al.)

• Limitations:
 • Crustaceans only
 • Dead/decaying crustaceans may also release chitobiase
 • Does not include egg production
Biomass size spectra (BSS) (Sheldon et al. 1972)

The distribution of biomass by body size can be represented by a straight line of low, negative slope. Where, the intercept is indicative of system productivity and slope of transfer efficiency.
Edvardsen et al., 2002

• Measured BSS in a sub-artic Norwegian Fjord during 3 cruises separated by ~21 days
• Compare BSS measured using Laser Optic Particle Counter (LOPC) and net tows
• Look at changes in biomass size spectra through time to estimate growth and mortality rates for certain size classes/cohorts = secondary production
• Time series of BSS
Basedow et al. 2014

• Measure secondary production from the biomass size spectra of the Polar fronts in the Barents Sea using a CTD, Fluorometer, and LOPC.
• Estimated growth and mortality
• Point observations of BSS

\[P_w = g \times w \times \frac{N}{dW} \text{(in mg C m}^{-3}\text{d}^{-1}) \]

Where weight specific growth (Zhou et al. 2010):
\[g(w, T, C_a) = 0.033 \left[\frac{C_a}{C_a + 205e^{-0.125T}} \right] e^{0.09T}w^{-0.06} \]

And weight specific mortality at time t:
\[\mu(w, t) = gS \]

Convert biovolume size spectra to biomass size spectra
\[mgC = 0.0475 \times \text{body volume} \]
(Calliene et al., 2001)

\[C_a : \text{Chlr-a} = 50 \]
(Reigstad et al., 2008)

\[P_w \] = production normalized by size bin (mgCm}^{-3}\text{day}^{-1}); \(w \) = weight (mgC/individual); \(g \) = weight specific growth rate (day}^{-1}); \(N \) = abundance of individuals; \(C_a \) = food concentration (mgC m}^{-3}); \(T \) = temperature °C; \(S \) = slope of size spectra; \(t \) = time
Can point observations of biomass size spectra be used to effectively quantify secondary production?

Compare secondary production in an HNLC and seasonally productive region?
Approach

• Construct biomass size spectra for the North Pacific using zooplankton net samples and multi-frequency acoustics to quantify secondary production

• Compare/calibrate the Chitobiase, Edvardsen et al., 2002, and Basedow et al., 2014 techniques for estimating secondary production during a 2 week study in Saanich Inlet, BC

• Comparison of secondary production between HNLC and seasonally productive regions in the North Pacific (1995-present)
Datasets

Line P
- 1995-present
- Oceanic/HNLC
- P04, P12, P20, P26

La Perouse
- 1995-present
- HNLC/Seasonally Productive stations
- Continental shelf/Oceanic stations
- CS01, CS07, LC04, LC09, LG02, LG09

Saanich Inlet
- 2016 (T. Venello)
- Seasonally productive
- S1, S3, S5
HNLC stations

Seasonally productive stations

PICES 2017 Annual Meeting
Preliminary results
Preliminary results

P04 – Seasonally productive
P26 – HNLC
Applications

• Food-web models (Cheung lab UBC)
• Implications for fisheries
• NSERC strategic grant linking satellite derived estimates of primary production to secondary production and fisheries productivity
• Modelling climate change scenarios
Limitations/considerations

- Point observations of size spectra
- Day/night variability
- Continuous biomass?
- Simplification of a complex system
Acknowledgements

Theresa Venello, Brian Hunt, Philippe Tortell, Andrea Lee, Jason Everett, Iain Suthers, Moira Galbraith, Stephane Gauthier,

Questions?
Lian Kwong
lkwong@eoas.ubc.ca