Seasonal hypoxic zone adjacent the Changjiang Estuary

Hao Wei, Yunchang He, Qingji Li, Zhiyu Liu, Haitang Wang

Physical Oceanography Lab, Ocean University of China
Qingdao, 266003, China P.R.
Contents

1. Introduction
2. Hypothesis
3. Observation during September 2003
4. Analysis and discussion
5. Perspective
1. Introduction

- What’s hypoxia?
 hypoxia: DO<2mg/l;
 bottom with weak water exchange;
 an index to eutrophication;
- What’s its biological effects?
 Organisms will die; more H2S;
 Benthic community will change;
 Pelagic community will change.
Dead Zone in the Mississippi River Plume

Area: $2 \times 10^4 \text{km}^2$
There is a large south-northward band of hypoxic zone (DO<2mg/l) adjacent the Changjiang estuary during warm season like other estuaries of large runoffs in the world, more sensitive disappear as the north wind onset.
<table>
<thead>
<tr>
<th>Time of survey</th>
<th>center of lowest DO zone</th>
<th>DO minimum value mg/l</th>
<th>Investigator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1959.8</td>
<td>123°00' E, 31°30' N</td>
<td>2.57</td>
<td>Hongkan Gu et al. (1980)</td>
</tr>
<tr>
<td>1981.8</td>
<td>123°00' E, 30°50' N</td>
<td>2.00</td>
<td>Limeburner et al. (1983)</td>
</tr>
<tr>
<td>1982.8</td>
<td>122°30' E, 31°15' N</td>
<td>2.85</td>
<td>Jiyu Chen et al. (1988)</td>
</tr>
<tr>
<td>1988.8</td>
<td>123°00' E, 30°50' N</td>
<td>1.96</td>
<td>Tian et al. (1993)</td>
</tr>
<tr>
<td>1999.8</td>
<td>122°55' E, 30°51' N</td>
<td>1.00</td>
<td>Daoji Li et al. (2002)</td>
</tr>
<tr>
<td>2003.9</td>
<td>122°56' E, 30°49' N</td>
<td>0.8</td>
<td>This study</td>
</tr>
</tbody>
</table>

Trends of hypoxia in the ECS
What induces and maintains the hypoxia adjacent the Changjiang Estuary?
- Nutrients input from Changjiang and other areas increasing dramatically;
- POC increasing;
- Frequently HAB;
- Over fishing;

role of physical processes?
3. Observation during late summer, 2003
DONGFANGHONG 2 R/V

Seabird911-CTD: Temperature and Salinity profiles

YSI: DO profiles

RDI OS7kHz ADCP: Current profiles
Dramatic low dissolved oxygen concentration (DO) less than 0.8mg/l was found during the cruise Sep. 2003. The hypoxic zone was about 2×10^4km2 along the 20-50m isobaths.
4. Analysis and Discussion

- DO distribution
- DO vs. water mass
- DO vs. density stratification
- DO vs. phytoplankton biomass
- DO vs. POC
Dissolved Oxygen (mg/L) of 20m layer in Sept. 2003

Horizontal distribution of DO (20m layer)

DO of 20m layer

Yellow line refers to 2mg/l
DO (mg/l) of bottom layer in Sept. 2003

Horizontal distribution of DO (Bottom layer)

DO of Bottom layer

Yellow line refers to 2mg/l
Trend of hypoxic zone has a good relationship to the 50m isobaths.
Vertical distribution of DO was mainly analyzed on section Y and section PN.
DO on northern section Y:
Hypoxic zone exists under 10m depth and the area is larger.
DO on southern section PN: Hypoxic zone is at the depth of 18-40m and much smaller.
Horizontal distribution of salinity (Surface layer)

Surface salinity shows that Changjiang diluted water (CDW) plume points to ENE.
Salinity (ppt) of 20m layer in Sept. 2003

Horizontal distribution of salinity (20m layer)
Northern Section Y: high salinity water at stations Y3 to Y5.
Southern Section PN:
Less influence in the south as CDW turns northeast when run out of mouth.
Horizontal distribution of sea temperature (20m layer)

Temperature of 20m layer

T of 20m layer
Temperature on northern section Y: thermocline at the depth of 5-10m with 4m thickness; a warmer core at depth larger than 25m of station Y3 which was taken as the leading edge of TWC.
Profile of Temperature ($^\circ$C) of Section PN:

- Step-like thermal stratification
- Surface thermal front at P11-P10 station
- Cold water at P11-P10 deeper than 30m
Lower DO is not the character of a water mass!
SIGMT at the depth of 20m layer
Dense water at inner side
<table>
<thead>
<tr>
<th>Station</th>
<th>Profile of Sigma-t (kg/m³) of Section Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.00</td>
<td></td>
</tr>
<tr>
<td>14.50</td>
<td></td>
</tr>
<tr>
<td>15.00</td>
<td></td>
</tr>
<tr>
<td>15.50</td>
<td></td>
</tr>
<tr>
<td>16.00</td>
<td></td>
</tr>
<tr>
<td>16.50</td>
<td></td>
</tr>
<tr>
<td>17.00</td>
<td></td>
</tr>
<tr>
<td>17.50</td>
<td></td>
</tr>
<tr>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td>18.50</td>
<td></td>
</tr>
<tr>
<td>19.00</td>
<td></td>
</tr>
<tr>
<td>19.50</td>
<td></td>
</tr>
<tr>
<td>20.00</td>
<td></td>
</tr>
<tr>
<td>20.50</td>
<td></td>
</tr>
<tr>
<td>21.00</td>
<td></td>
</tr>
<tr>
<td>21.50</td>
<td></td>
</tr>
<tr>
<td>22.00</td>
<td></td>
</tr>
<tr>
<td>22.50</td>
<td></td>
</tr>
<tr>
<td>23.00</td>
<td></td>
</tr>
<tr>
<td>23.50</td>
<td></td>
</tr>
<tr>
<td>24.00</td>
<td></td>
</tr>
<tr>
<td>24.50</td>
<td></td>
</tr>
<tr>
<td>25.00</td>
<td></td>
</tr>
<tr>
<td>25.50</td>
<td></td>
</tr>
</tbody>
</table>

Pycnocline stronger in section Y than PN section. Salinity determined on Y and temperature determined on PN. Hypoxia consistent with stronger density stratification.
Bottom hypoxic zone was the same as high bottom Chl-a distribution.

We speculated that bottom algae rather than the surface bloom should be the source of the particulate organisms that consume the dissolved oxygen when then decay.
Particulate materials from Changjiang River

Most SPM from Changjiang sediment inside turbidity front
Profile of Trubidity (NTU) of Section PN

Station

-80 -70 -60 -50 -40 -30 -20 -10

Dep (m)

P12 P11 P10 P9 P8-1 P8 P7 P6

Profile of Turbidity (mg/l) of Section Y

Station

-40 -30 -20 -10

Y5 Y4 Y3 Y2 Y1

Profile of Turbidity (mg/l) of Section Y

Min. of Turb in pycnocline

POC doesn’t deposit locally

0.00 1.00 2.00

3.00 4.00 5.00 6.00

7.00 8.00 9.00 10.00 11.00

12.00 13.00 14.00

15.00 16.00 17.00 18.00 19.00 20.00 21.00

22.00

DO vs. Particulate materials

Min. of Turb in pycnocline → POC doesn’t deposit locally.
Profile of Density Diffusivity of Section PN

Source of POC:
- settled from upper layer,
- horizontal transport, vertical mixing, resuspension relate to sediment type
Remarks:

• **DO vs. water mass**
 lower DO is not the character of a water mass

• **DO vs. density stratification**
 strong density stratification maintains the hypoxia zone in the open area;
 plume at upper layer and salty water at lower layer make the high density difference; hypoxia area determined by extension of plume and salty water;

• **DO vs. phytoplankton biomass**
 not directly?

• **DO vs. POC**
 not locally?
5 Perspective

- Worth to further research representative for wide shelf with strong tide under monsoon and influenced by west boundary current; more complicate
- Not take as one box, more research will be given in quantificational way. Mixing?
- Community structure change? Organism adequate? Is it harm?
- What’s the main reason? Could be the hypoxia volume decreased? How?
Thanks for your attention!