Fish movement and commercial fishing impacts on Steller sea lions

Fishery Interaction Team (FIT)
Elizabeth A. Logerwell, A. B. Hollowed, C. D. Wilson, P. Walline, P. Munro, M. E. Conners, S. McDermott, S. Neidetcher, D. Cooper and K. Rand

Alaska Fisheries Science Center, National Marine Fisheries Service, USA
Fishery Interaction Team (FIT)

- Peter Munro
- Susanne McDermott
- Bing Shi
- Liz Conners
- Dan Cooper
- Sandi Neidetcher
- Kim Rand
Fishery Interaction Team (FIT)

Goal – investigate the potential impact of commercial groundfish fishing

Impacts – distribution, abundance, biological characteristics, community characteristics

Purpose – provide advice re: effects of management actions on fish community, marine mammals, seabirds and etc.
Steller sea lion (*Eumetopias jubatus*)

http://nmml.afsc.noaa.gov/gallery/pinnipeds/pinniped_gallery3.htm
Decline of the western stock of sea lions

1997 SSL declared endangered (ESA)

Sease & Gudmundson 2002
FIT’s current mission

1. Do commercial fisheries result in localized depletion and/or disruption of Steller sea lion prey fields?
2. What is the efficacy of existing protection measures (trawl exclusion zones)?
Groundfish species

- Atka mackerel (*Pleurogrammus monopterygius*)
- Pacific cod (*Gadus macrocephalus*)
Pacific cod

- Family Gadidae
- Spawning aggregations in Aleutian Islands and SE Bering Sea during winter
- 11% of commercial catch
- Large portion of sea lion diets in winter
Pacific cod project overview

- Field test for localized depletion of cod due to commercial trawling
- Before-after-control-impact design
• Cape Sarichef no-trawl zone intersects historically trawled area, provides “Treatment” and Control”
• Surveys “Before” (Jan) and “After” (March) main trawl season
• 2004, 2005

• Pot catch used as index of local cod abundance. Pots provide good sample size and spatial precision.
• Compare change in pot catch (After/Before) between treatment and control areas.
Measured Variable: Ratio of Average Catch After/Before

- $X_B =$ Avg. catch over 3-5 pots in “Before” survey
- $X_A =$ Avg. catch over 3-5 pots in “After” survey
- Percentage change δ

$$\delta_i = \frac{(X_A - X_B)}{X_B} = \frac{X_A}{X_B} - 1$$

$\delta \sim 0$ No change in abundance
$\delta > 0$ Increased abundance
$\delta < 0$ Decrease abundance

- Compare δ between control and treatment
N= 40 sites trawled, 40 sites untrawled
Cod catch increased from January to March
Wilcoxin Rank-Sum Test for difference in means: p=0.981
If localized depletion, expect less of an increase in trawled
Power: 75-95% chance of detecting 30% reduction in catch
Distribution of Pct Change - 2005

Wilcoxin Rank-Sum Test for difference in means: p=0.807
Power: 75-95% chance of detecting 20% reduction in catch
Possible Reasons for Observed Result:

1. Fishery removals not enough to significantly affect local abundance
2. Effect disperses in <2 weeks
3. Spatial scale of effect larger than scale of experiment
4. Directional migration of fish – spatially displaced effects
Possible Reasons for Observed Result:

1. Fishery removals not enough to significantly affect local abundance
2. Effect disperses in <2 weeks
3. Spatial scale of effect larger than scale of experiment
4. Directional migration of fish – spatially displaced effects
Tags released in Trawl Exclusion Zone (Control Area) at Cape Sarichef and recovered less than 8 days at liberty (n = 42).
Tags released in Trawl Exclusion Zone (Control Area) at Cape Sarichef and recovered between 7 to 14 days at liberty (n = 73).

Legend
- February 2003 Releases
- April 2002 Releases
- Cape Sarichef Research Area
- Trawl Exclusion Zones
Summary

• Pacific cod
 – Localized depletion due to commercial fishing was not observed
 – Movement through study area was great
 – Suggest that commercial fishing effect was dispersed or displaced
Atka mackerel

- Family Hexagrammidae
- One of the most abundant groundfish in the Aleutian Islands
- Large portion of SSL diets during summer and winter
Atka mackerel project overview

• Evaluate efficacy of trawl exclusion zones (TEZ)
 – Do fish move from inside to outside?
 – What is the abundance of fish inside?
• Tag release-recovery model
 – Local abundance
 – Movement rates
Atka mackerel – Study site
Study sites

Amchitka
Tanaga
Seguam
Movement rate

In- to Outside TEZ
Out- to Inside TEZ

Segment (2000)
Segment (2002)
Tanaga E
Tanaga W
Amchitka S
Amchitka N

Area

Movement rate (day⁻¹)
Management implications?

- Efficacy of trawl exclusion zones varies geographically
 - Seguam and Tanaga
 - High biomass, low movement, more effective
 - Amchitka
 - Low biomass, high movement, less effective
Conclusions

- **Pacific cod**
 - Suggest that a localized commercial fishing effect was dispersed or displaced due to fish movement
 - Need to consider fish movement when designing studies of fishery effects
- **Atka mackerel**
 - Suggest that trawl exclusion zones at sites where movement from inside to outside is great are less effective
 - Need to consider fish movement when designing trawl exclusion zones or marine protected areas
Contact information

http://www.afsc.noaa.gov/refm/stocks/fit/FIT.htm

Libby.Logerwell@noaa.gov

206-526-4231