Geographical shifts in the spatial distribution of Northeast Pacific groundfish populations

Franz J. Mueter1, Bernard A. Megrey2, and Jeff M. Napp2

1Joint Institute for the Study of the Atmosphere and the Oceans, P.O. Box 354235, University of Washington, Seattle, WA 98115, USA. E-mail: fmueter@alaska.net

2National Marine Fisheries Service, Alaska Fisheries Science Center, 7600 Sand Point Way NE, Seattle, WA, USA 98115.
Objectives

- Quantify changes in spatial distribution of demersal fish and invertebrates in the Northeast Pacific Ocean
 - Bering Sea (59 taxa)
 - (Gulf of Alaska, U.S. West Coast)
- Examine potential causes
 - Bottom temperature
 - Abundance (density dependence)
 - Residual long-term trends
- Test for northward shift in response to warming trend?
Data: CPUE from bottom trawl survey

Eastern Bering Sea
1982-2004

Gulf of Alaska
1984-2003

Anchorage
Juneau
Kodiak I.
Approach: quantifying shifts in distribution

- Estimate & remove average spatial pattern
 - Anomalies in probability of occurrence
 - Anomalies in CPUE-where-present
- Quantify spatial gradients in anomalies for each survey year
 - Latitude / alongshore distance
 - Depth
- Estimate trends in gradients over time
Total CPUE: average spatial pattern 1982-2004

fourth-root transformed CPUE

Longitude

Latitude

Alaska
Distribution by depth / time of year

fourth-root transformed CPUE

Julian Day

Depth (m)
Annual means: Total CPUE

fourth-root transformed CPUE

Year

CPUE anomalies for two periods

1982 - 1986

2000 - 2004
Difference in anomalies among periods

Alaska
Differences in anomalies and SE

Differences:

2 x Standard errors
Smooth trends by latitude and depth

- CPUE anomaly vs. (rotated) latitude
- CPUE anomaly vs. Depth

- 1982 - 1986
- 2000 - 2004

- south
- north
- shallow
- deep
Smooth trends by latitude and depth

(Anomalies relative to 1982-2004 means)
Annual gradients in total CPUE by latitude and depth

(latitudinal anomaly) (depth anomaly)

(± 2 SE confidence intervals TOO NARROW as they DO NOT account for spatial autocorrelation)
Indices for individual taxa

- **Probability of occurrence**
 - Model presence / absence as function of latitude, longitude, bottom depth, Julian day, net width, and **tow duration**
 - Residuals (logit-scale) as indicators of anomalies in probability of occurrence

- **CPUE-where-present**
 - Model as function of latitude, longitude, bottom depth, Julian day, net width
 - Residuals (log-scale) as indicators of spatial anomalies in CPUE-where-present
Trends in latitudinal anomalies across species

Highly mobile taxa

Sessile / limited mobility

Linear trend in latitudinal anomalies, 1982-2004
Trends in latitudinal anomalies (CPUE) selected taxa

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Slope</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepidopsetta sp. rock sole</td>
<td>1.53</td>
<td>0.000</td>
</tr>
<tr>
<td>Theragra chalcogramma walleye pollock</td>
<td>1.01</td>
<td>0.000</td>
</tr>
<tr>
<td>Scyphozoa jellyfish</td>
<td>0.84</td>
<td>0.002</td>
</tr>
<tr>
<td>Limanda aspera yellowfin sole</td>
<td>0.76</td>
<td>0.001</td>
</tr>
<tr>
<td>Rajidae skates</td>
<td>0.65</td>
<td>0.000</td>
</tr>
<tr>
<td>Lycodes brevipes shortfin eelpout</td>
<td>0.57</td>
<td>0.033</td>
</tr>
<tr>
<td>Hippoglossus stenolepis Pacific halibut</td>
<td>0.47</td>
<td>0.018</td>
</tr>
<tr>
<td>Bathymasteridae ronquils</td>
<td>0.42</td>
<td>0.011</td>
</tr>
<tr>
<td>Holothuroidea sea cucumbers</td>
<td>0.37</td>
<td>0.035</td>
</tr>
<tr>
<td>tunicates</td>
<td>0.21</td>
<td>0.010</td>
</tr>
<tr>
<td>Podothecus acipenserinus sturgeon poacher</td>
<td>0.18</td>
<td>0.027</td>
</tr>
<tr>
<td>Glyptocephalus zachirus rex sole</td>
<td>-0.17</td>
<td>0.005</td>
</tr>
<tr>
<td>Myoxocephalus spp</td>
<td>-0.32</td>
<td>0.037</td>
</tr>
<tr>
<td>Hemilepidotus papilio butterfly sculpin</td>
<td>-0.46</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Average latitudinal anomalies

Highly mobile taxa

Sessile / limited mobility

-6 -4 -2 0 2 4 6

Mean slope

1999
Potential causes of latitudinal shifts

• Temperatures
 • Estimated average bottom temperature within survey area by year

• Changes in abundance
 • Average CPUE by year for each species
Trends in latitudinal anomalies

Trends with temperature

Trends with mean CPUE

Number of taxa

Slope

Highly mobile taxa

Sessile / limited mobility

Highly mobile taxa
Residual time trends in latitudinal anomalies

Significant trends (p < 0.05), 1982-2004:

Northward shift
- Pacific halibut (*Hippoglossus stenolepis*)
- Bering flounder (*Hippoglossoides robustus*)
- Yellowfin sole (*Limanda aspera*)
- Ronquils (*Bathymasteridae*)
- Tunicates

Southward shift
- Arrowtooth flounder (*Atheresthes stomias*)
- Pacific cod (*Gadus macrocephalus*)
- Rex sole (*Glyptocephalus zachirus*)
Summary and conclusions

• Significant northward shifts in center of distribution of numerous demersal taxa on the eastern Bering Sea shelf over the last 20+ years
• Shifts related to changes in bottom temperature and abundance
• If current warming trend continues, biomass on northeastern Bering Sea shelf is likely to increase relative to the southeast
• Range extensions are likely because several species are near northern limit of their distribution
Acknowledgements

• The numerous NOAA fisheries scientists and crew that go out year after year to conduct surveys
• Jay Ver Hoef for advise on spatial modeling