Use of ecosystem models for study and management of coastal estuarine ecosystems in Korea

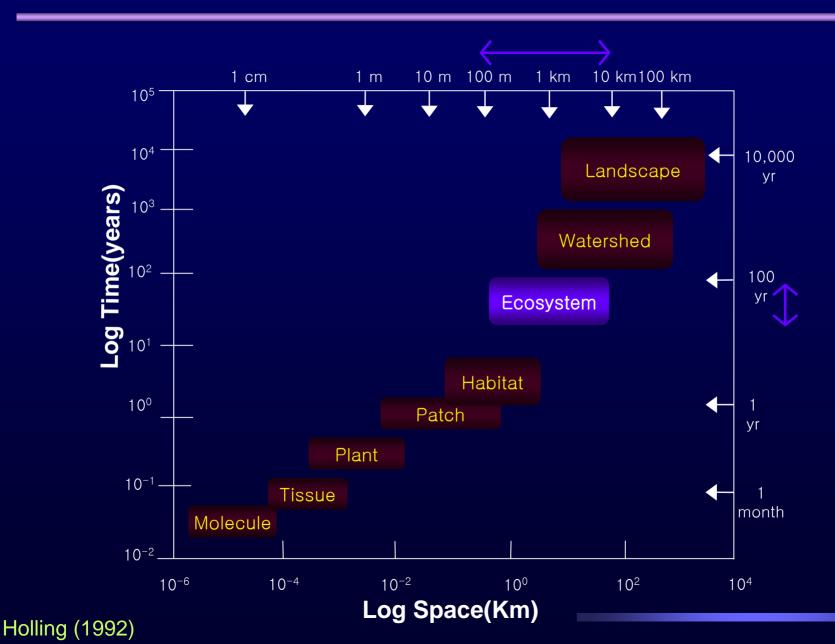
Yongsik Sin

Mokpo National Maritime University
Division of Ocean System Engineering

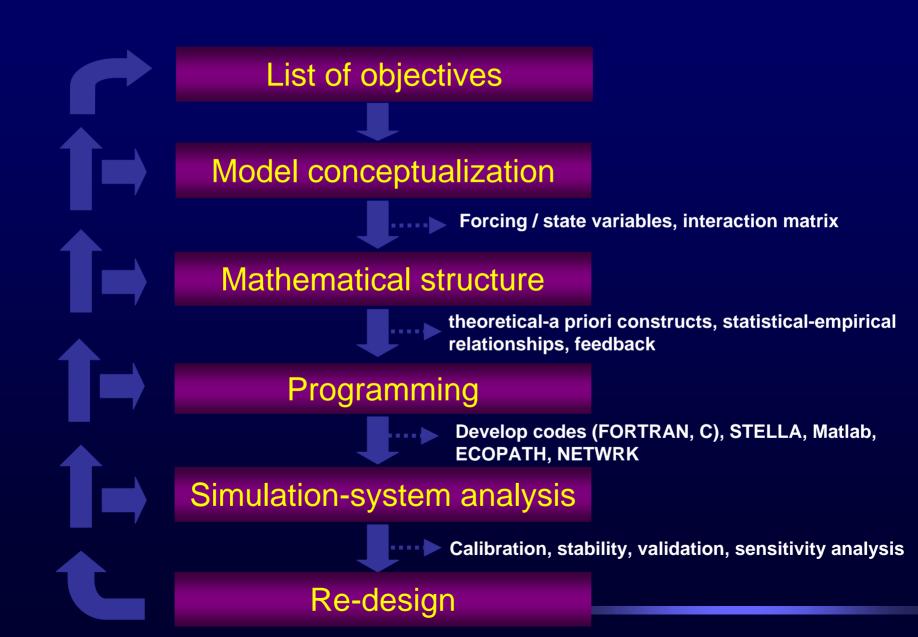
CONTENTS

- Background
 - Characteristics of estuarine systems
 - Simulation models
- Steps of ecosystem model development
- Examples of ecosystem models
 - Saemankum plankton model
 - Kwangyang Bay Seagrass model
- Conclusions
- Future research

BACKGROUND


Coastal estuarine dynamics

- Complex mainly due to freshwater from adjacent land & tidal energy inputs from coastal ocean
- Internally steep physical, chemical and biological gradients and high spatial and temporal heterogeneity


Simulation models (simplification of systems)

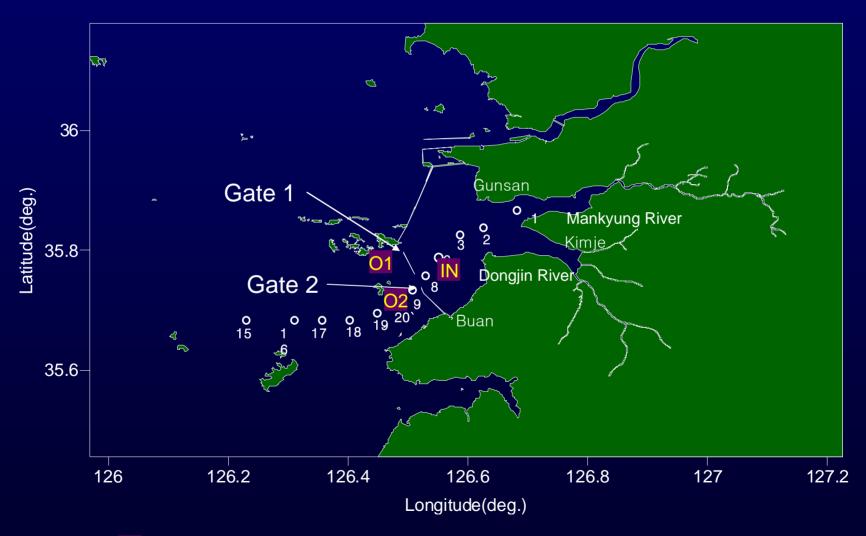
- Ability to integrate a vast array of information from multidisciplinary research and describe interactions between living resources and environments
- Useful tools:
 - 1 to plan and guide research programs
 - 2 to identify data weaknesses and gaps
 - 3 to formulate testable hypotheses about system's structure and function
 - 4 to evaluate management-oriented alternatives

SPACE-TIME SCALES OF SYSTEMS ANALYSES

DEVELOPMENT OF ECOSYSTEM MODEL

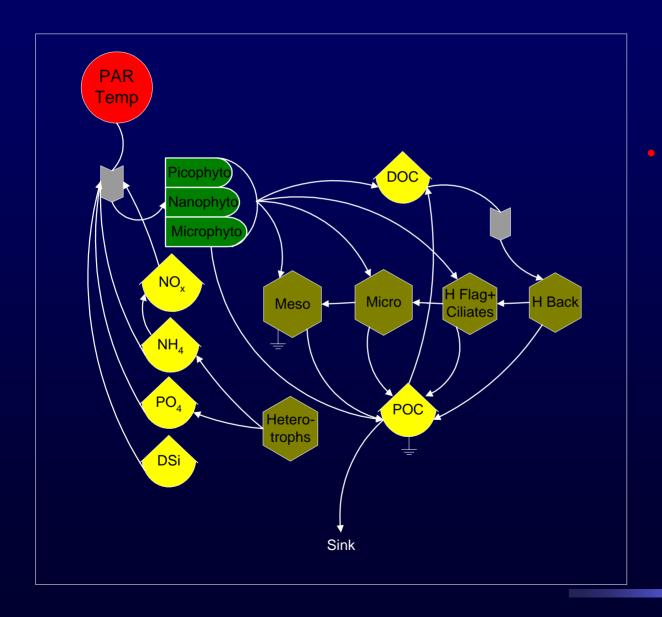
I. Saemangeum plankton ecosystem model

Satellite Images

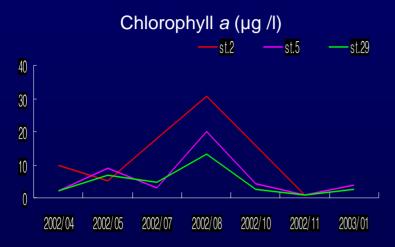


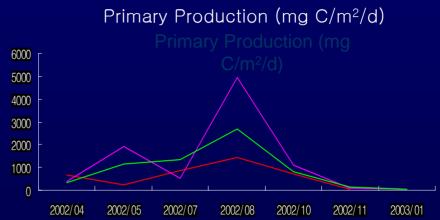
Background

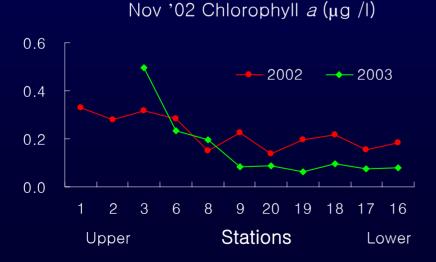
- Construction of a dike and land reclamation in Saemangeum
 - Period: 1991 2011 (34km dike)
 - 2004: 32.3 km constructed (95 %)
 - Cost: 3.26 trillion won (\$3.11 billion USD)
- Monitoring and modeling studies (2002 current)
 - Multisciplinary (physio-, geo-, chem- and biology) survey supported by Korean Ministry of Maritime Affairs and Fisheries
- Objective of ecosystem modeling analysis (2004)
 - to identify sensitive environmental factors
 - to predict response of Saemangeum ecosystem to the environmental disturbance resulting from construction of the dike and land reclamation

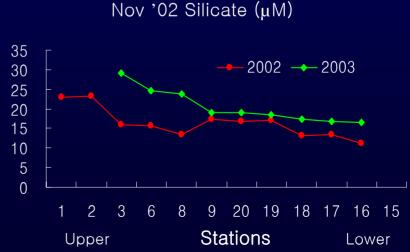

pproach **Analysis of Historical Records Understanding Structure of** Saemankum Ecosystem **Development and Verification** of Ecosystem Model Use of the Ecosystem Model Water Quality Modeling Identification of Sensitive **Environmental factors** Predicted Environmental Changes Response to **Environmental Change (scenario) Alternatives**

Sampling and modeling stations

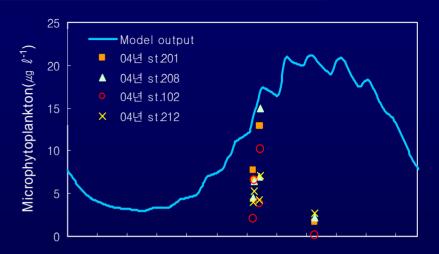

: Modeling Stations

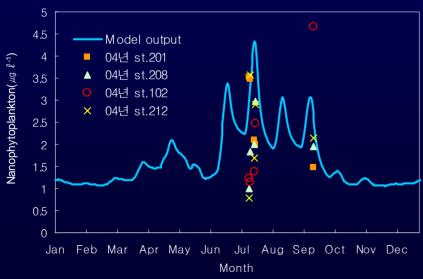

Conceptual Structure

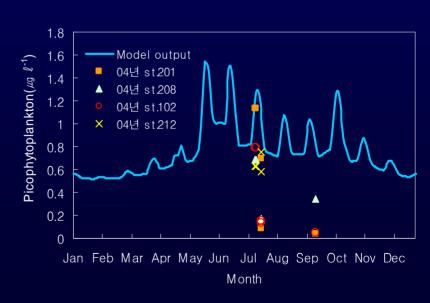



- Conceptualization based on historical data analysis
 - 12 state
 variables +
 forcing
 variables such
 as light and
 temperature
 - Mixotrophes not considered

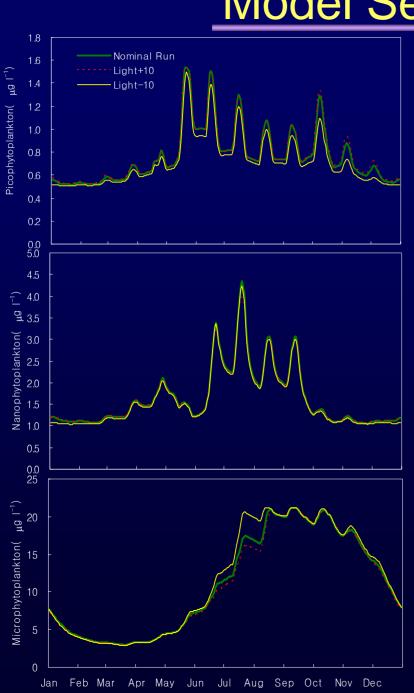
Saemankum Pelagic Ecosystem

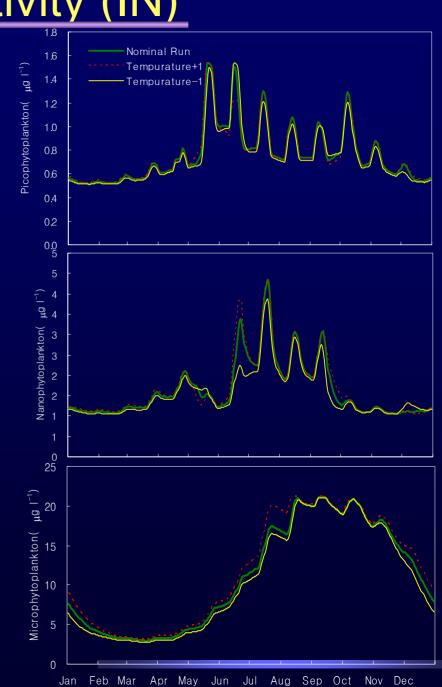






Model Validation (IN)




Model Stability (IN)

Parameters	State Variable											
T didiliotoro	PP	NP	MP	НВ	HP	Z1	Z2	POC	DOC	NH ₄	NO _x	PO ₄
Optimum light												
Exudation rate												
Grazer Preference												
Cell mass												
Mortality rate						0.0025/ 11	0.001/ 18					
Fraction of sloppy feeding						0.0032/ 13	0.0011/18					
Fraction of egestion						0.0032/14	0.0011/18					
Grazing by fishes							0.0007/ 12					
Grazing loss rate												
Leaching rate												
C:N ratio												
Denitrification												
C:P ratio												
N:P ratio												
C:Chl ratio												

RMS / % change to 10% changes of parameters (PP picophyto, NP nano-, MP micro-, HB heterotrophic bacteria, HP protozoa, Z1 microzooplankton, Z2 meso-)

Model Sensitivity (IN)

Design of Scenarios

Scenarios	Development stage	Water quality criteria
В	Dongjin region land-filled and gate 1 open all the time	
С	All regions land- filled and gate 2 open at flooding alone	C1: 3 rd criteria of the freshwater discharged C2: 4 th criteria C3: 5 th criteria

Scenario Prediction (% biomass change)

	Variables Scenario	picophyto	nanophyto	microphyto	bact	protozoa	microzoo	mesozoo
Outside 1 (O1)	В	-0.84	-1.50	-1.31	-0.26	-5.04	-0.42	1.21
	C1	-0.93	-1.89	-9.21	-0.25	-4.84	-0.39	-0.42
	C2	-0.63	-1.10	-1.97	-0.17	-3.35	-0.30	0.80
	C3	-0.72	-1.22	-1.60	-0.20	-3.89	-0.37	1.11
Outside 2 (O2)	В	-0.90	-3.03	-0.90	-0.27	-2.89	-1.09	1.43
	C1	0.22	0.86	0.37	0.08	0.92	0.32	-0.82
	C2	0.14	0.58	0.87	0.04	0.48	0.19	-0.19
	C3	0.28	1.16	1.55	0.09	0.96	0.37	-0.53

Pico(nano, micro)phyto=pico(nano, micro)phytoplankton; bact=heterotrophic bacteria; micro, mesozoo=micro, mesozooplankton

Summary

- Response of phytoplankton to changes of environmental variables is size-dependent in the modeling analyses for the Saemankum
- Water temperature may be more important factor than light intensity to control phytoplankton biomass in the Saemankum
- Response of plankton ecosystem in the outside region 1 near gate 1 is more likely sensitive to expected change of environmental disturbance than outside region 2 near gate 2.

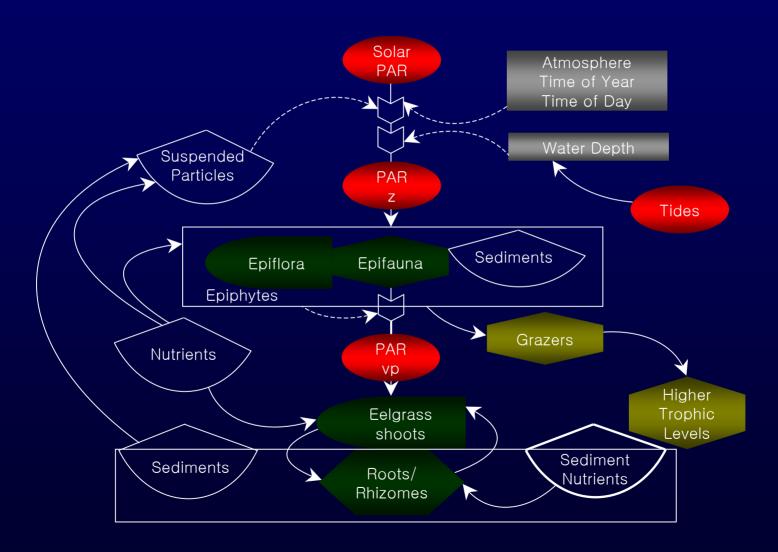
II. Seagrass Ecosystem Model in the Kwangyang Bay

Yongsik Sin, Richard Wetzel

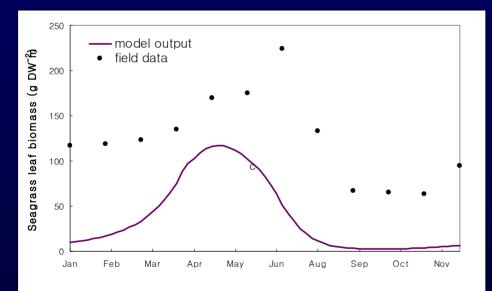
Kwangyang Bay

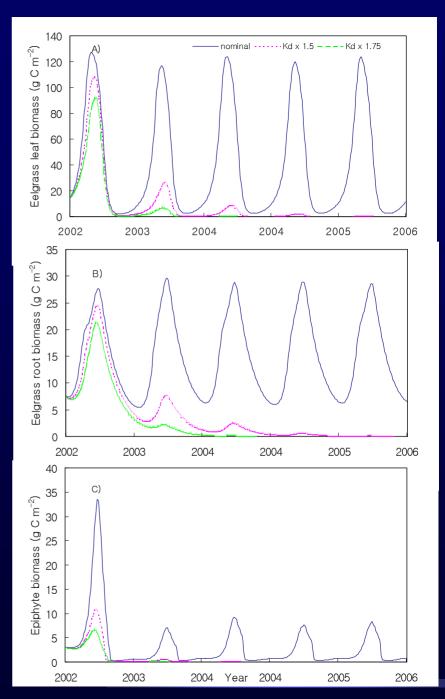
Aquaculture and fisheries active (productive)

Land reclamation and industry activity 1
Aquaculture and fisheries declined
Water quality declined


Background

- Seagrass (SAV; Submerged Aquatic Vegetation) ecology
 - Benthic primary producer; sediment stabilization
 - Substrate for epiphytic algae, sessile invertebrates
 - Habitats for various lives (fish, shellfish, benthos etc.)
 - Indicator of water quality (especially water turbidity)
- Seagrass in the Kwangyang Bay
 - Dominant species in the Kwangyang Bay; Zostera marina (eelgrass)
 - Eco-physiological model for Zostera marina (Wetzel & Neckles 1986)


Objective:


- to identify major factor controlling the seagrass biomass using a seagrass ecosystem model
- to suggest the water quality criteria to sustain seagrass habitats in the Kwangyang Bay

Conceptual Structure

Model validation and analysis

Summary

- The principal controlling factor for the dominant species *Zostera marina*: water clarity
- A reliable prediction of SAV survival and depth distribution (submarine light)
- A tool to test specific water quality habitat criteria in relation to achievement of ecosystem restoration goals (water quality management)

Conclusion

- Response of phytoplankton to changes of environmental variables is size-dependent and water temperature may be more important factor than light intensity to control phytoplankton biomass in the Saemangeum
- Response of plankton ecosystem in the outer region 1 is more likely sensitive to change of environmental disturbance than outer region 2.
- Water clarity may be an important factor to control the seagrass biomass in the Kwangyang Bay
- Ecosystem models are a useful tool for understanding phytoplankton and seagrass dynamics and better management of the ecosystem and water quality in the coastal estuarine systems

Future Research

- Carrying capacity in aquaculture
- Optimum condition for aquaculturing frawns (shrimps)
- Neural network technique in dynamic modeling analysis
- Network analysis