

MSE and indicators for EBFM

Beth Fulton, Mike Fuller and Tony Smith CSIRO Marine and Atmospheric Research

Acknowledgements

- SCOR working group
- Jake Rice
- Marie-Joelle Rochet
- Mark Bravington
- Robin Thomson
- Helen Webb
- Andre Punt
- Jason Link

- Cathy Bulman
- Miriana Sporcic
- Ross Daley
- Alistair Hobday
- Sally Wayte

Supported by funding from the Australian Fisheries
 Management Authority, Agriculture Fisheries and
 Forestry Australia, and the Department of Environment
 and Heritage

Motivation

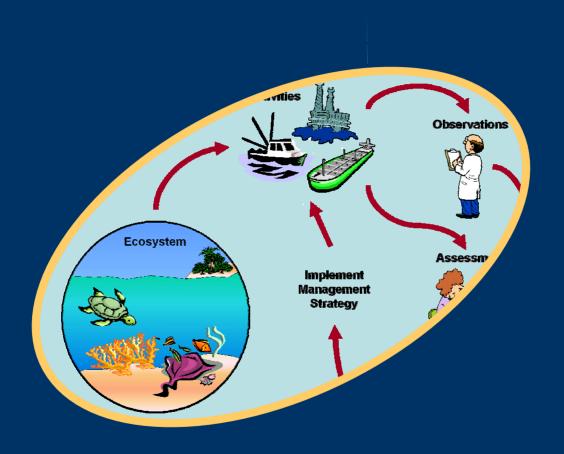
Focus globally (public and science) = ecosystems

- Legislation requires assessment of fisheries impacts on the environment (e.g. in Australia)
 - moving to ecosystem-based fisheries management (EBFM)

Basis of EBFM

Not why and what, but how?

- Many documents but come down to 3 parts
 - set and operationalise objectives (hardest step)
 - assess current system status (indicators)
 - decision rules and implementation


Indicators

- Ecological indicators
 - many potential indicators, but do they work?
 - many framework/criteria documents, few tests (growing slowly now)

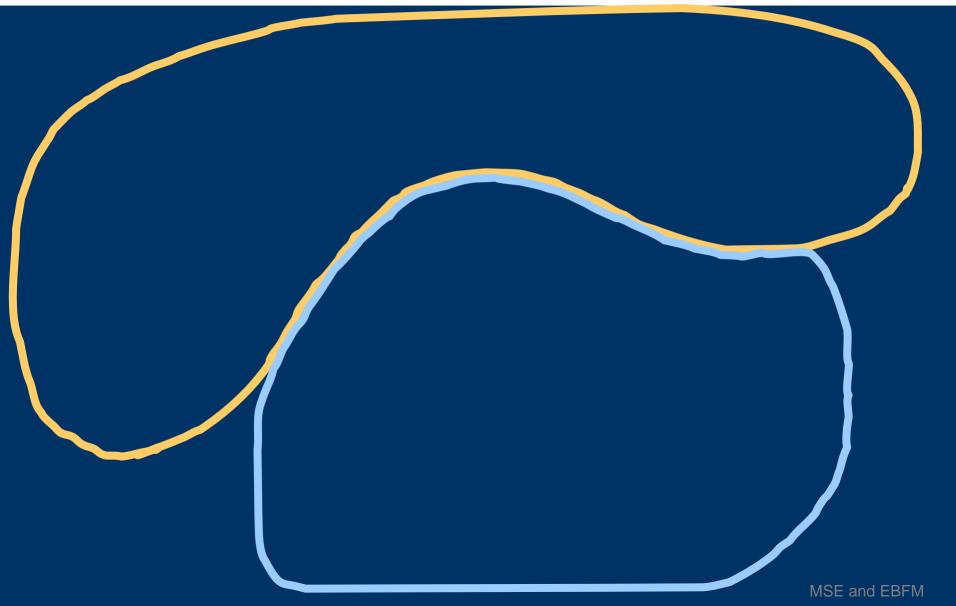
- Australia data poor
 - systematic field test impossible, thin first
 - simulate
 - targeted field check

Management Strategy Evaluation

Indicators Tested

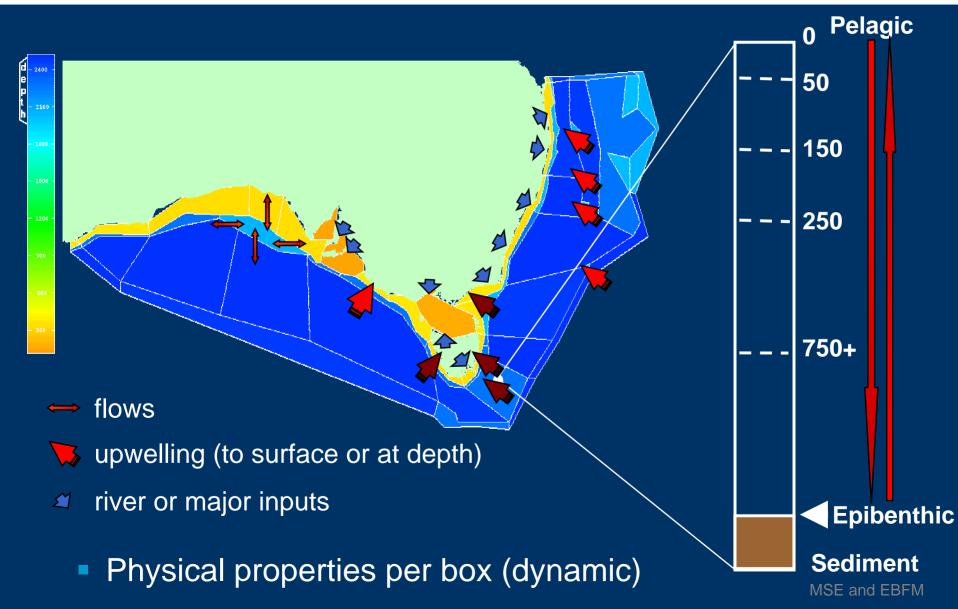
- No operational EBFM objectives
 - diagnostic indicators tested (ecological information content)
 - robust = indicators that reliably and consistently predict trends in 1+ key attributes

- Indicators tested cover
 - populations, assemblages (communities), habitats, ecosystems
 - empirical, model-dependent
 - fisheries dependent and independent



Attributes

- Gross form of communities and ecosystem (+ key groups of concern)
 - biomass, size structure, spatial structure, number of groups to represent 80% of the biomass
 - species, guilds, communities
- Structure of communities and ecosystem
 - diversity, foodweb structure, trophic levels
- Ability to support current ecosystem state in the long-term
 - production, throughput, consumption, nutrient cycling
- System maturity
 - respiration


Simulation Model - Atlantis

Geography and Hydrodynamics

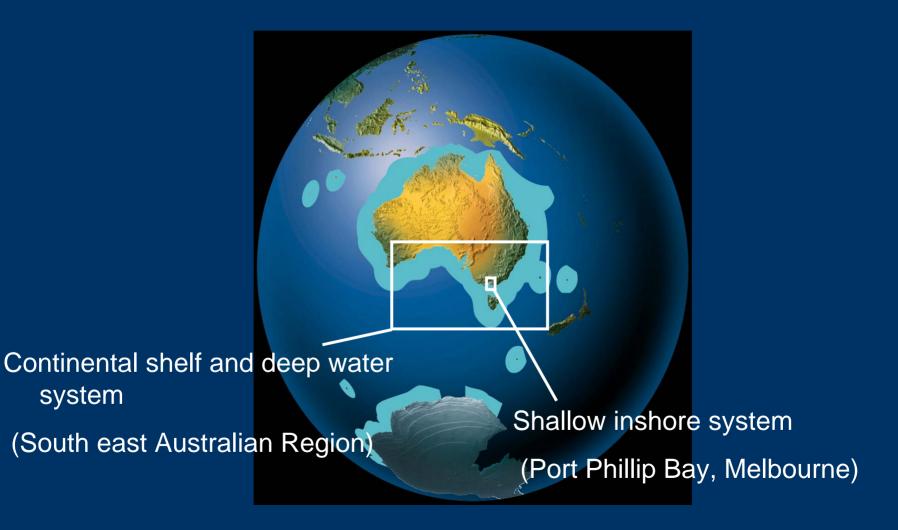
Ecology

- Biophysical
 - sediment nutrient cycling
 - growth limitation (nutrient, light, oxygen, space, substrate)
- Ecological
 - main processes (feeding, reproduction, movement, mortality, waste, age)
 - functional groups (by size and diet)
 - invertebrate biomass pools, vertebrate age structured (+ condition)

Fisheries

- Harvest
 - multiple fleets
 - ports,
 - gears (catchability, availability, selectivity, escapement)
 - effort allocation (displacement, targeting)
 - impacts (including discarding, habitat modification etc)

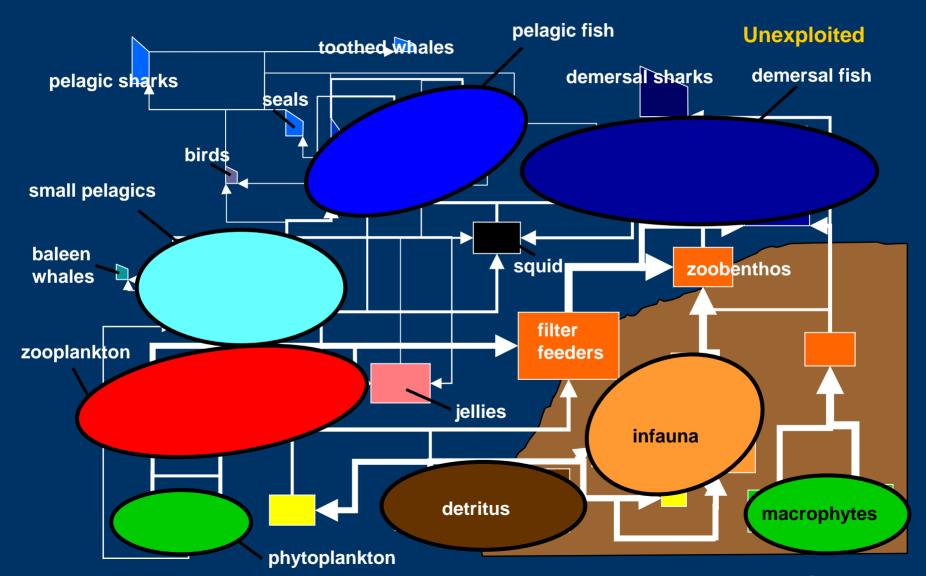
Observation Submodel



- Fisheries dependent data (with error)
- Fisheries independent data
 - observers
 - surveys (user defined sampling design)
 - with error
 - diet information can be at coarser resolution
- Additional processing (aging, aggregate data, models)

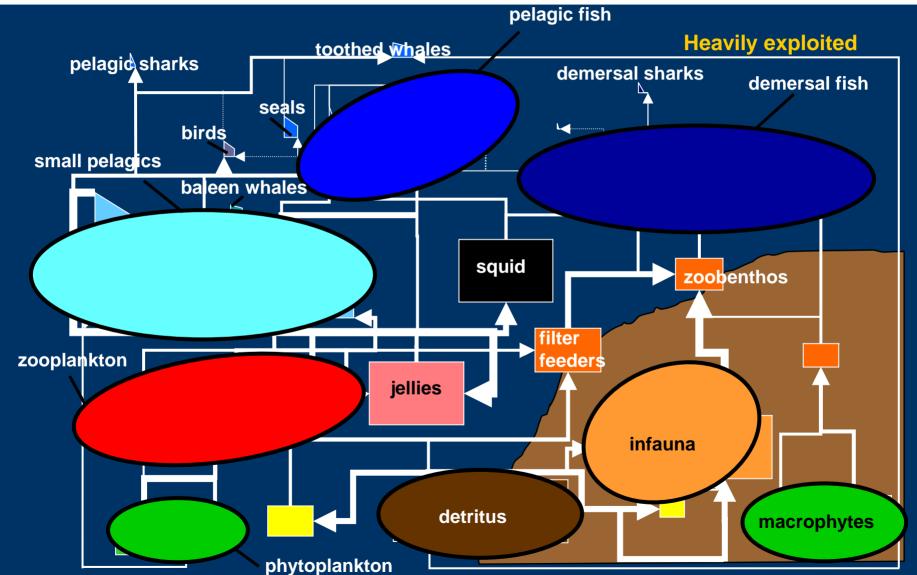
system

Simulated Ecosystems



Scenarios and Sampling design

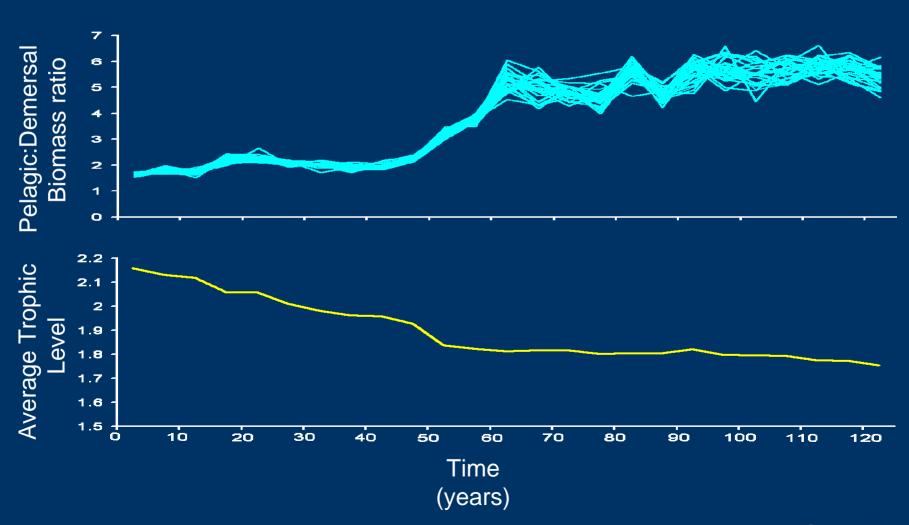
- Scenarios
 - anthropogenic (levels and types of impacts), fisheries and management structure (closures, effort control, quotas, mitigation, gear, compliance)
 - ecological (system closure, linkage strength, charismatic recovery)
- Sample design (sampling aggregation, temporal patchiness and lags)



Atlantis Model Behaviour

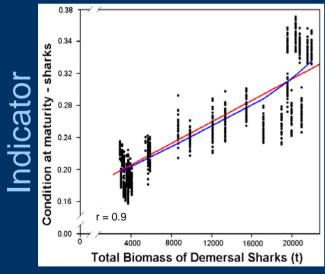
Atlantis Model Behaviour

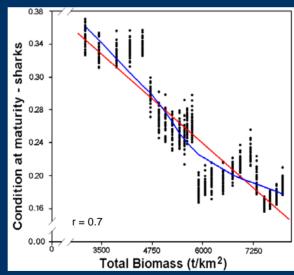
Attribute behaviour

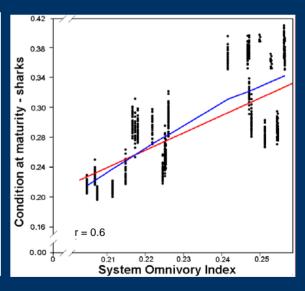

- Attribute correlation
 - check for value of multiple correlations per indicator
 - check for "isolated" attributes
 - system structure
 - system productivity
 - migrants and what attracts them to the system
 - nutrient cycling (and productivity)
 - diversity (and productivity)

Analysis

- Correlation of indicators with attributes through time
 - linear only (too hard to interpret and actually use if non-linear)
 - Pearson and Spearman correlation
- Categories
 - Consistent or Inconsistent
 - Broad (|r|>0.5 for 40% attributes) or Restricted
 - Very Clear (|r| > 0.9) or Strong (0.9 ≥ |r| > 0.7) or Recognizable (0.7 ≥ |r| > 0.5) or Uninformative ($|r| \le 0.5$)
- Determine how robust indicators are to
 - ecosystem conditions, levels and patterns of fishing pressure, sampling and processing error

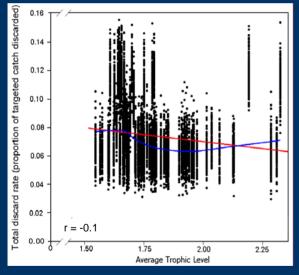

Indicator vs Attribute

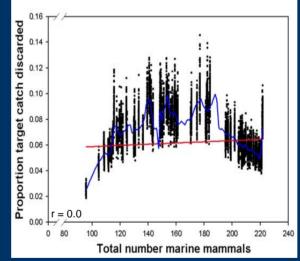


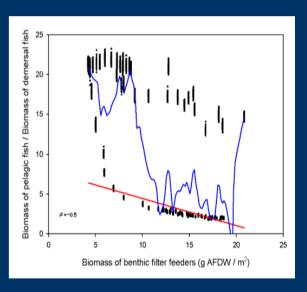


Good performance

- Linear correlation with large r (easy to interpret and use)
- e.g. condition at maturity of sharks (size at maturity good too and easier to measure)


Attribute




Poor performance

No correlation (or linear with low r) or non-linear (hard to use!)

Attribute

Simulation Results

- E+C versus P
- Ecosystem- and community-level indicators dominate
 - consistent, broad, |r| > 0.7

Consistent (system independent)

Inconsistent (system dependent)

Broad (|r|>0.5 for 40+% attributes)

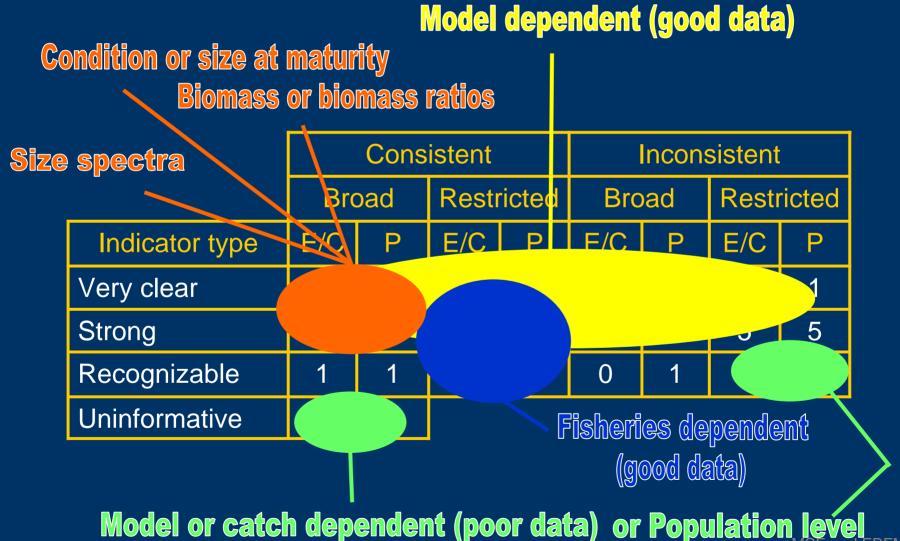
Restricted (|r|>0.5 for <40% attributes)

Very Clear (|r| > 0.9)

Strong $(0.9 \ge |r| > 0.7)$

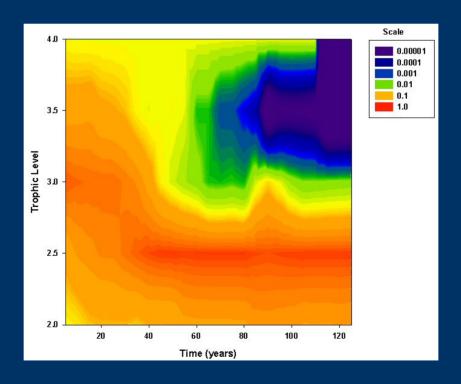
Recognizable $(0.7 \ge |r| > 0.5)$

Uninformative ($|r| \le 0.5$)


Dack	Consistent				Inconsistent			
	Broad		Restricted		Broad		Restricted	
Indicator type	E/C	Р	E/C	Р	E/C	Р	E/C	Р
Very clear				3		0		1
Strong		2		12		0		5
Recognizable		1		7		1		
Uninformative								

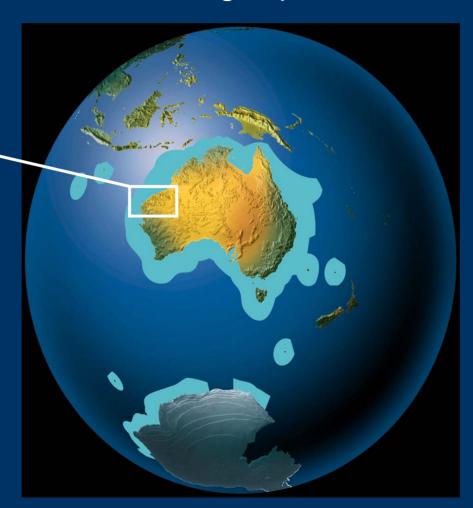
* mostly model dependent with public trongs, or misspecification

Simulation Results


Reflected in skewed frequency of correlation

Simulation results

- Multidimensional indicators (size spectra, trophic spectra, ABC curves)
- Harder to summarise, but signal clear



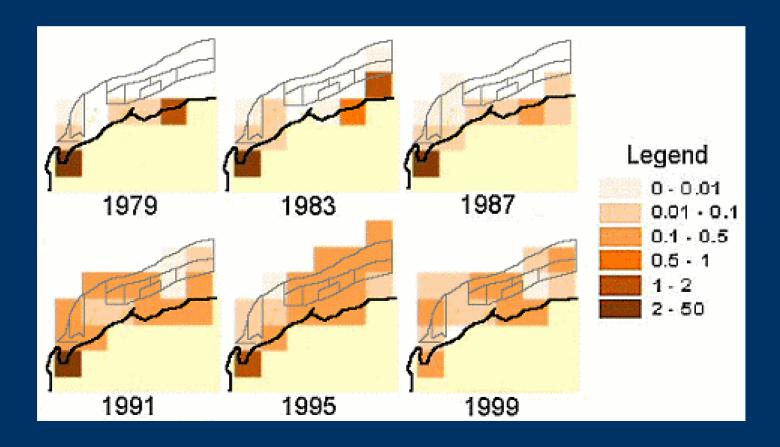
GIS Indicator study

Trends in indicators through space and time

GIS test area
(North West Shelf)

Indicators Tested Using GIS

- Checked best performing from simulation tests
 - habitat cover
 - chlorophyll a
 - biomass ratios
 - average trophic levels
- Checked indicators that are most preferred "traditionally"
 - diversity (counts)
 - maximum length of catch
 - CPUE and catch trends


GIS results

- Performance consistent across simulations and GIS
- Spatial scale
 - data very poor single value maybe best can achieve
 - signal strength potentially stronger on slightly finer scale
 - different trends inshore vs offshore (different pressures)
- Traditional fisheries indicators contained weakest and least reliable signals
- Fisheries dependent data can still contain a signal
 - even using simple "rule of thumb" assumptions

GIS results - Example

e.g. ratio small bodied : large bodied catch

General Findings – Indicators

- Good indicators
 - easily measured (easy to sample, easy to calculate)
 - cost effective
 - easily understood (interpreted)
- Problems
 - none perfect
 - always some system dependency
 - pragmatism required (even simple indicators hard to do in practice, simple assumptions maybe needed)

General Findings – No One Indicator

- Need a suite (no single indicator) as indicator performance may differ with
 - ecosystem
 - history of exploitation
 - other pressures (e.g. pollution, environmental change)
 - quality of sample collection

General Findings – Suite Needs

- Suite needs to contain indicators associated with
 - groups with fast turnover rates (potential early warning)
 - groups targeted by fisheries (state of exploited section of the ecosystem)
 - habitat defining groups
 - sensitive or key groups (often have "slow dynamics")
 - multiple spatial and temporal scales
 - range of processes (with different rates), biological groups and indicator types (tactical and strategic, early warning and integrated system state)
 - best combination of signal detection + system state MSE and EBI

Recommended Indicator Groups

- Indicator functional groups found to be useful
 - gelatinous zooplankton
 - cephalopods
 - seagrass
 - planktivores
 - demersal fish
 - top predators (large sharks, mammals)

Recommended Indicators

Undesirable reference direction

	Biomass ratios	
↑	Piscivore : Planktivore	\downarrow
↑	Pelagic : Demersal	↑
↑	Infauna : Epifauna	↑
↑	Size at maturity	\downarrow
*	Maximum length of catch	\downarrow
\downarrow		
\downarrow	Trophic spectra (slope)	Steeper
\downarrow	Size spectra (slope)	Steeper
\downarrow	ABC curves (W)	\
↓*		
^*	Temperature	
	↑ ↑ ↑ ↑ * ↓ * ↓ * ↓ *	 ↑ Piscivore : Planktivore ↑ Pelagic : Demersal ↑ Infauna : Epifauna ↑ Size at maturity ↓* Maximum length of catch ↓ Trophic spectra (slope) ↓ Size spectra (slope) ↓ ABC curves (W) ↓*

Reference points – Link 2005

- Link 2005 (ICES) provides warning / limit reference points
- mean length of catch
- slope of size spectrum
- biomass of pelagics, flatfish, piscivores, top predators, scavengers, jelly fish
- diversity (counts)
- habitat cover
- catch
- number of cycles
- mean number of interactions per species

Indicator Guidelines

- Performance: for ecosystem-level concerns use ecosystem- or community-level indicators
 - population-level often too sensitive to "noise" or species-specific factors
- Responsiveness: Community-level (or population) for early warning and management
 - ecosystem level too slow to respond (due to rate of system change and sampling frequency)
- Complexity: The fewer steps in calculation the better
 - simple indicators (relative biomass of indicator groups, biomass ratios, size spectra and condition or size at maturity) are preferred
 - catch and model based indicators should NOT be used alone (VERY sensitive to data quality)

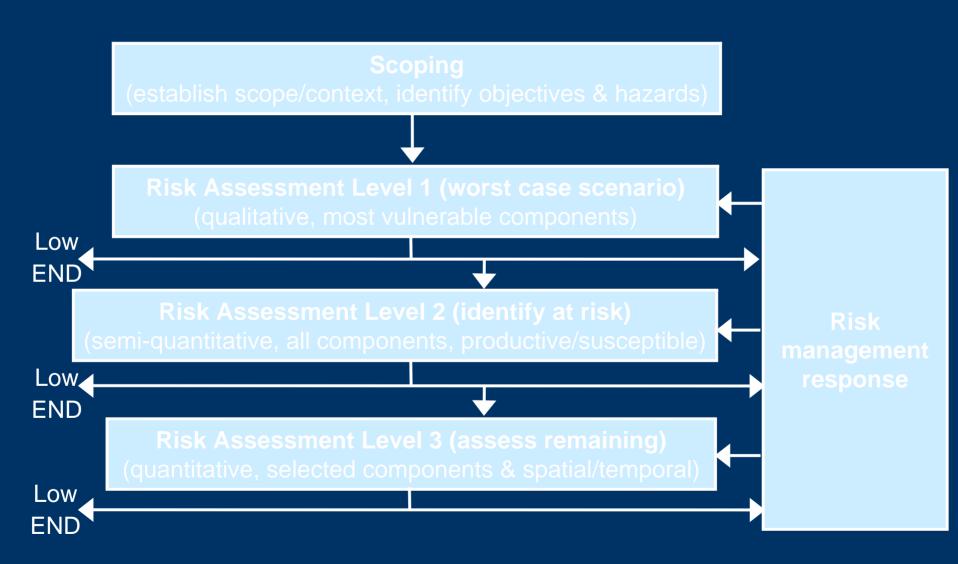
Ecological indicators in EBFM

- Within EBFM indicators will be used
 - for performance reporting vs management objectives
 - in feedback decision rules (tactical population-level indicators + strategic community-level indicators)
 - reference-level framework needs more attention (reference directions, Link et al PCA-like approach, "best practice")

- EBFM use of indicators (signal detection) benefits from
 - unfished reference areas (provide reference values)
 - fisheries independent data collection (provide broader understanding)
 - easier on shelf/slope than pelagic (require more data, but signal stronger)

Ongoing work

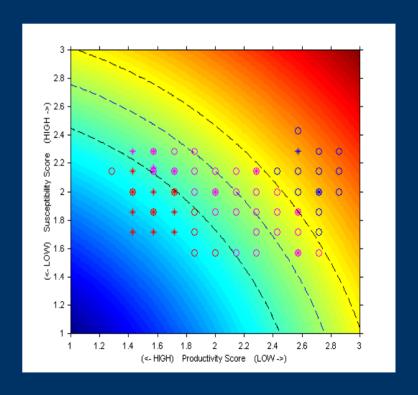
- Fisheries independent surveys initiated (early days in Australia)
- MSE studies (qualitative and quantitative phases)
 - 10+ ecosystem-level MSE underway in Australia
 - multi-sector not just fisheries (also social & economic objectives not just ecological)
- New tools under development
 - tiered harvest strategies (still primarily single species)
 - Ecological Risk Assessment



Ecological Risk Assessment

- Hobday et al (2004)
 - use existing data (& expert knowledge) to identify main hazards target, by-product, bycatch, PET species, habitats, communities
 - consider probability property of the system changes beyond acceptable limits
 - precautionary in absence of data (can be big penalty, so provide direction on future research)
 - hierarchical (3 levels, qualitative quantitative) and document screening decisions at each level
 - each level includes uncertainty analysis & screens out low consequence activities / low risk components

Ecological Risk Assessment



Ecological Risk Assessment

End results

- identify research gaps and major threats (allows consideration across fisheries & under different management schemes)
- susceptibility plots under alternative management strategies

Final Word

- Tactical management at ecosystem level unlikely (due to time lags)
 - haven't abandoned single species assessments
- Use indicators to put tactical management in context (check for wider unanticipated effects)
- Simple, high-level indicators are the most useful
- New (potentially less quantitative) tools under development
 - interestingly in Australia interest in ecosystem-level concerns have lead to consideration of less quantitative methods