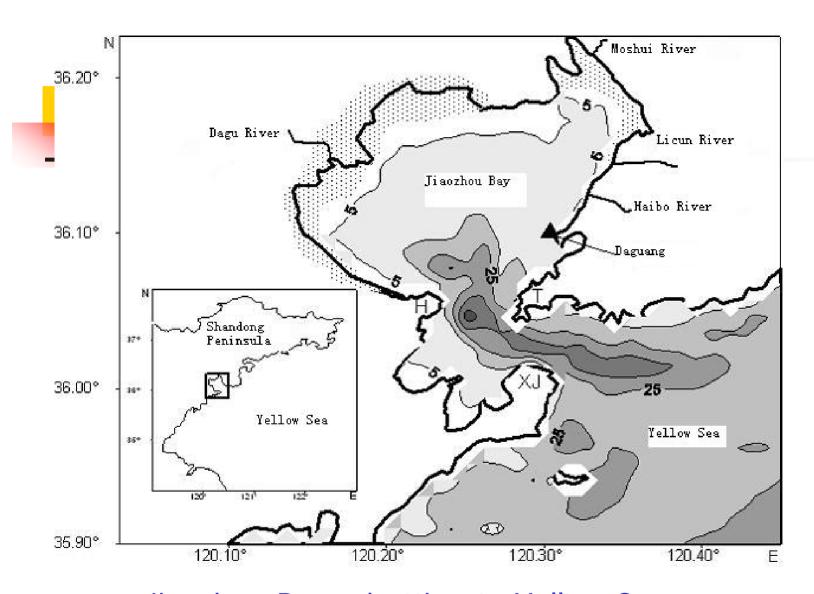
Application of Modified NEMURO Model to Jiaozhou Bay

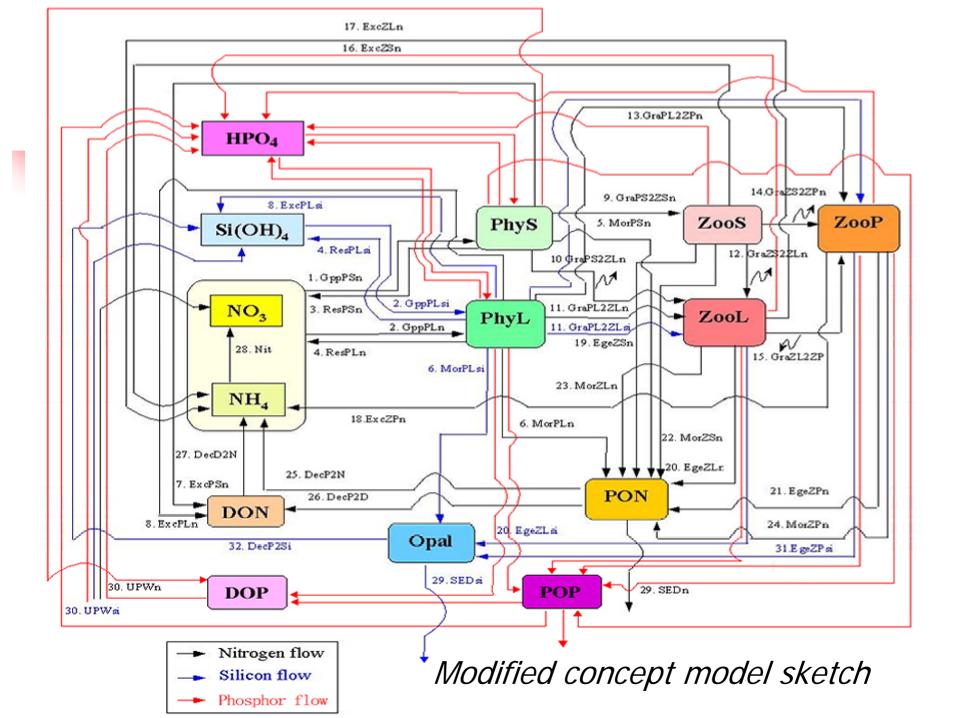

Zhenyong Wang, Hao Wei & Zuowei Zhang

Physical and Environmental Oceanography College, Ocean University of China
Oct 6th 2005

Significance of MEBM in Jiaozhou Bay

- HAB is increasing 3 times/a in China marine area. 1952~1998, 322 harmful red tides happened, and economic losses averages to 1 billion one year. Zhou Mingjiang et al. (2001)
- Eutrophication is aggravated in Jiaozhou Bay in 1990s. Red tides happened 4 times in the summer 1999. Environment Protection Agency of Qingdao (1999)

Jiaozhou Bay: abutting to Yellow Sea, 390km² totally and 6.8 m depth average.


Nutrient Changes in Jiaozhou Bay

- DIN was often run out during blooms in 1960s, so nitrate is limit nutrient. Gu Hongkan (1982)
- Atomic ratio of DIN:HPO₄ increased from 15.9 ± 6.3 for 1960s, to 37.8 ± 22.9 for 1990s. DIN and HPO₄ increased 3.9 times and 1.4 times respectively, while Si(OH)₄ remained at a low level from 1980s to 1990s. The reasons are river pollution and decrease of silt from runoff. Z.-L. Shen (2002)
- Atomic ratio of N/P was much bigger than 16:1 all the year 1995, except for the situation in summer. Wu Zengmao et al. (1995)

Modified NEMURO Model

- Phosphor is considered as HPO₄, DOP and POP are new variables.
- Vertical migration of ZL is omitted.
- Changeless mixed layer depth 6m and exchange rate $1.0/(6.0 \times 86400)s^{-1}$.
- Nutrients from rivers discharge and atmosphere sediment are considered together with those upwelling from bottom, in parameter UPW.
- HPO₄ takes part in formula or primary productivity as another parameter of the minimum-law.

Equations for Phosphor circulation

$$\frac{dPhySph}{dt} = GppPSph - Re\,sPSph - MorPSph - ExcPSph - GraPS2ZSph - GraPS2ZLph$$

$$\frac{dPhyLph}{dt} = GppPLph - Re\,sPLph - MorPLph - ExcPLph - GraPL2ZLph - GraPL2ZPph$$

$$\frac{dZooSph}{dt} = GraPS2ZSph - GraZS2ZLph - GraZS2ZPph - MorZSph - ExcZSph - EgeZSph$$

$$\frac{dZooLph}{dt} = GraPS2ZLph + GraPL2ZLph + GraZS2ZLph - GraZL2ZPph - MorZLph - ExcZLph - EgeZLph$$

$$\frac{dZooPph}{dt} = GraPL2ZPph + GraZS2ZPph + GraZL2ZPph - MorZPph - ExcZPph - EgeZPph$$

$$\frac{dHPO4}{dt} = -GppPSph - GppPLph + Re\,sPSph + Re\,sPLph + DecP2PHph + DecD2PHph + ExcZSph + ExcZLph$$

$$+ ExcZPph + UPWph$$

$$\frac{dDOP}{dt} = ExcPSph + ExcPLph + DecP2Dph - DecD2PHph$$

$$\frac{dPOP}{dt} = MorPSph + MorPLph + MorZSph + MorZLph + MorZPph + EgeZSph + EgeZLph + EgeZPph$$

$$- DecP2Dph - DecP2PHph - SEDph$$

1

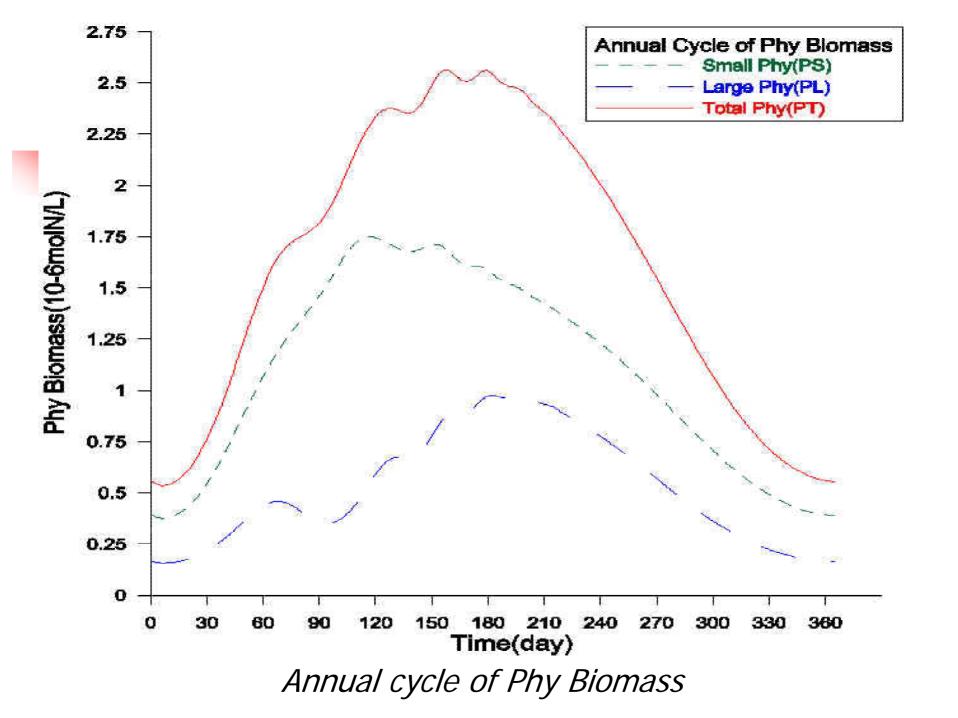
Phosphor in Nutrients Limit

$$GppPSn = V \max S \times \min \left(\frac{NO3}{NO3 + KNO3S} \exp(-\phi \times NH4) + \frac{NH4}{NH4 + KNH4S}, \frac{HPO4}{HPO4 + KHPO4S} \right)$$

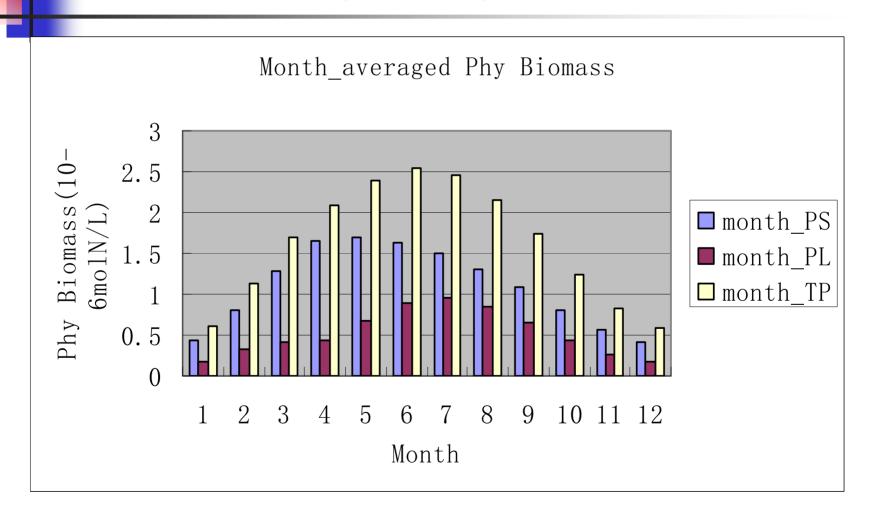
$$\times \exp(KGpps \times TMP) \times \int_{-H}^{0} \frac{I}{IoptS} \exp\left(1 - \frac{I}{IoptS}\right) dz \times PhySn$$

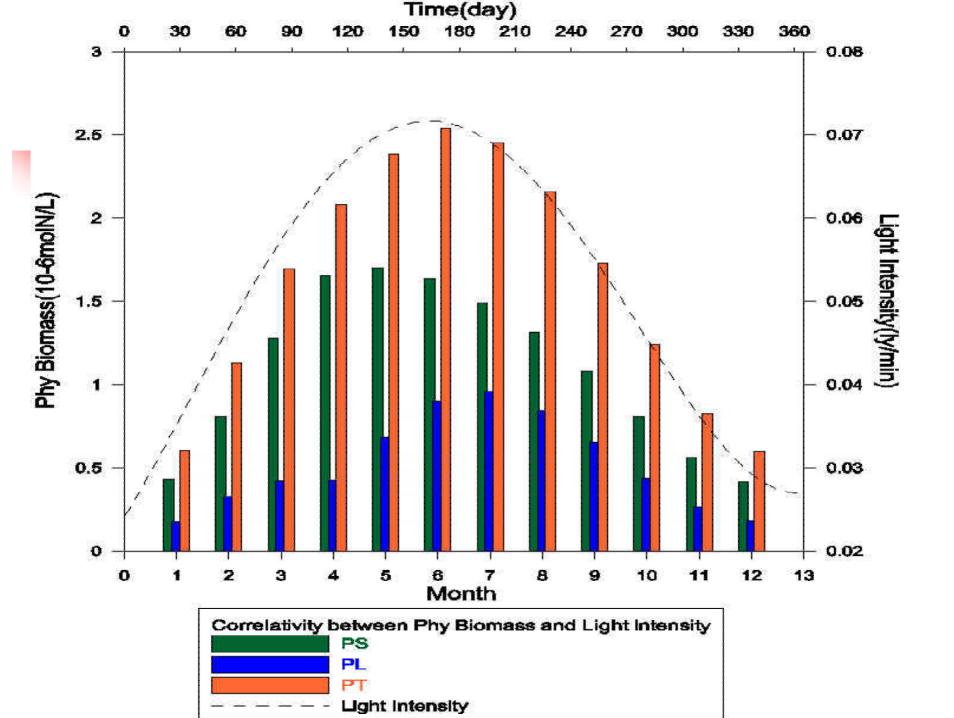
$$GppPLn = V \max L \times \min \left(\frac{NO3}{NO3 + KNO3L} \exp \left(-\phi \times NH4 \right) + \frac{NH4}{NH4 + KNH4L}, \frac{Si(OH)4}{Si(OH)4 + KSiL}, \frac{HPO4}{HPO4 + KHPO4L} \right)$$

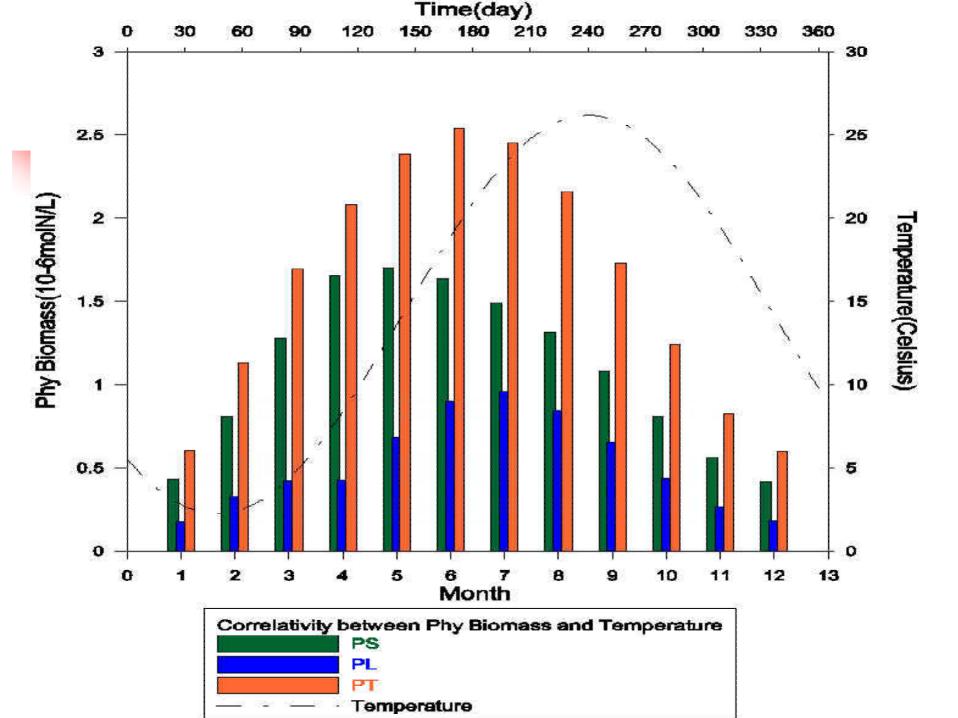
$$\times \exp \left(KGppl \times TMP \right) \times \int_{-H}^{0} \frac{I}{IoptL} \exp \left(1 - \frac{I}{IoptL} \right) dz \times PhyLn$$


Parameters	Introduction	Value	Unit	
VmaxS	Max photosynthesis rate at 0 • € by PhyS	1.0	day ⁻¹	
VmaxL	Max photosynthesis at 0 • € by PhyL	2.0	day ⁻¹	
Iopt	Light intensity of optimum photosynthesis by PhyS and PhyL	0.15	ly/min	
KGpp	Temperature coefficient for photosynthesis by PhyS and PhyL	6.93×10^{-2}	degC ⁻¹	
KNO3S	PS Half saturation constant for Nitrate to PS 1.0×10 ⁻⁶		molN/L	
KNH4S	PS Half saturation constant for Ammonium to PS	$0.1\times10^{\text{-6}}$	molN/L	
KNO3L	PL Half saturation constant for Nitrate to PL	3.0×10 ⁻⁶	molN/L	
KNH4L	PL Half saturation constant for Ammonium to PL	0.3×10^{-6}	molN/L	
KHPO4	PS Half saturation constant for Phosphor to PS and PL	0.815×10^{-6}	molPh/L	
KSiL	PL Half saturation constant for Silicate to PL	6.0×10^{-6}	molSi/L	
ExcTime	Exch. Coefficient. between all interfaces	1.0/ (6.0×86400)	s^{-1}	
MLD	Mixed layer depth	6.0	m	
TNO3d	NO3 concentration out of MLD	$14.0\times10^{\text{-6}}$	molN/L	
TSiOH4d	SiOH4 concentration out of MLD	$10.0\times10^{\text{-6}}$	molSi/L	
THPO4d	HPO4 concentration out of MLD	1.0×10 ⁻⁶	molPh/L	

Physical forcing functions of temperature and light intensity

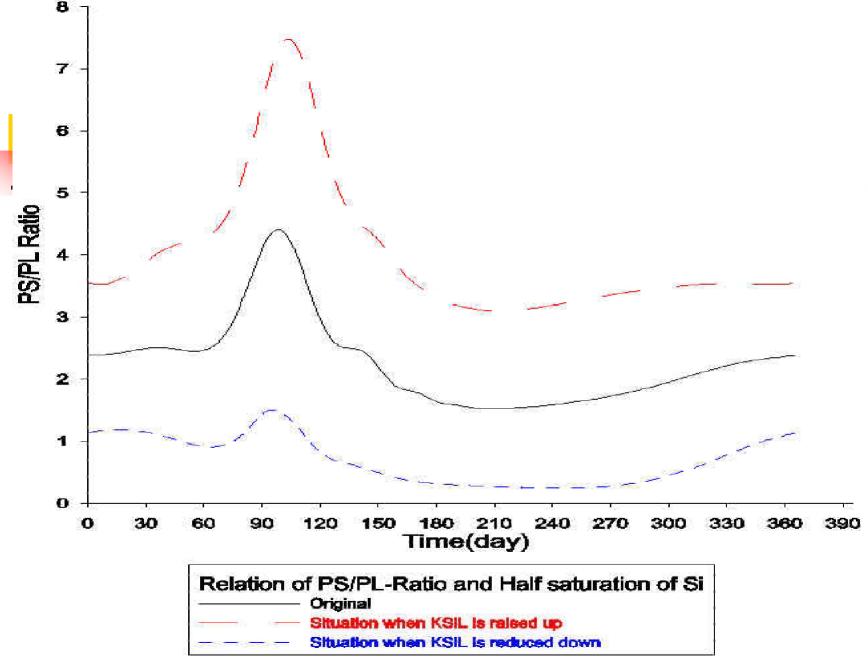

- Simulating dates from May 15th 1991 to Feb 15th 1998 by annual cycle with seasonal variation of light and temperature factors.
- Trigonometric function fitted by daily-averaged light intensity data in 1995, and spline function by monthaveraged temperature data rectified from that at Tianjin for years. Wu zengmao, 1999


```
L \text{ int } 0 = 1.09 \times [0.4451 \times t^4 - 0.7566t^3 + 0.191t^2 + 0.123t + 0.02237] \qquad t \in [0,1]
```

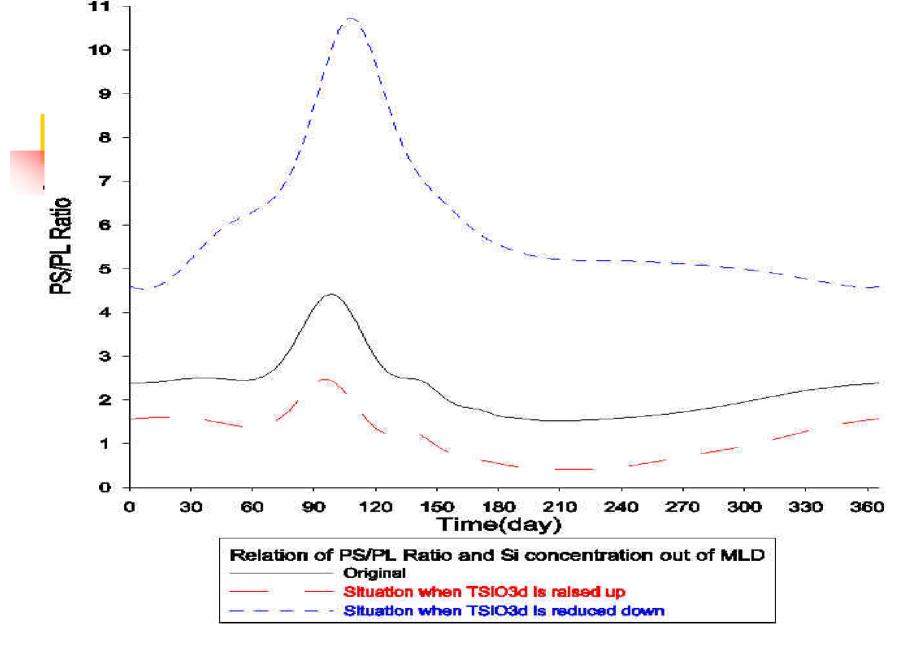

$$Temp = 14.19 - 8.79 \times \cos(5.932 \times t) - 8.12 \times \sin(5.932 \times t)$$
 $t \in [0,1]$

Annual cycle of Phy Biomass

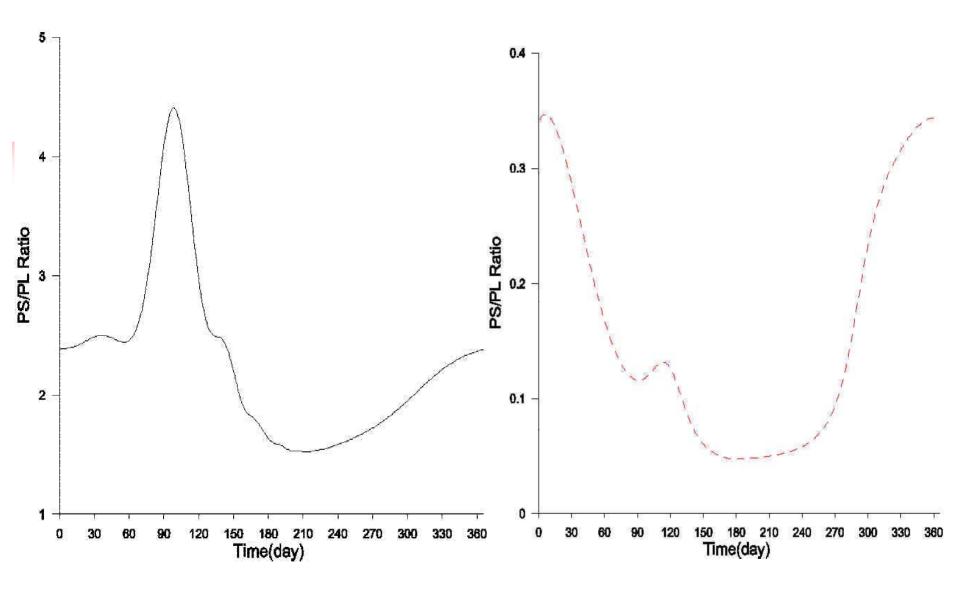
Sensitivity analysis

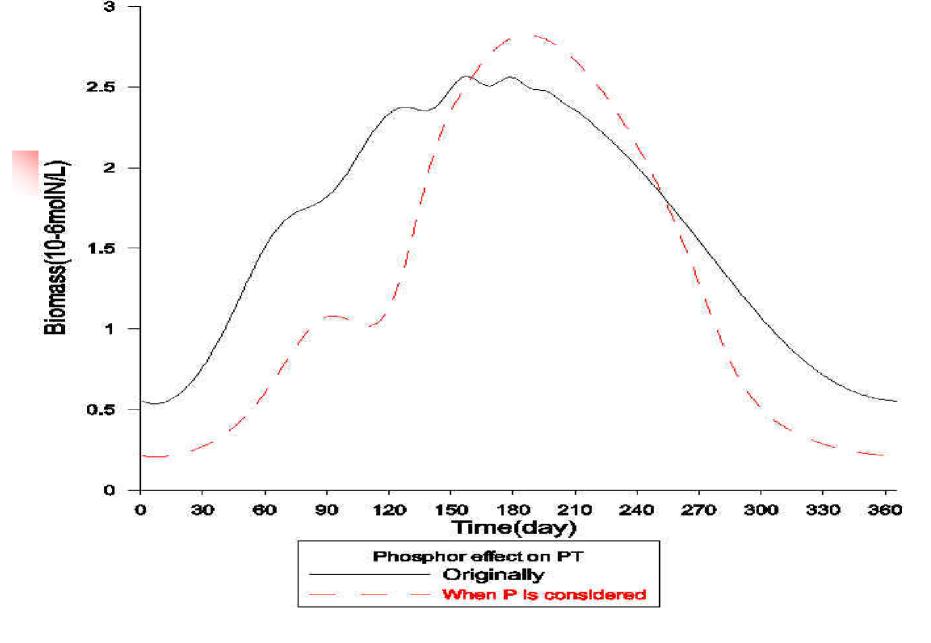

- Focusing on low-trophic-level,
 Phytoplankton-biomass-related parameters
- Maximum nutrient uptake rate
- Optimum light intensity
- Half saturation of nutrients
- Nutrients concentrations out of MLD

Parameter	Raised or	PhyS Biomass relate		PhyL Biomass relate		PhyT Biomass relate			
	decreased	change&Sensi-degree		change&Sensi-degree		change&Sei	change&Sensi-degree		
VmaxS	+50%	+91%	1.82	-28%	0.56	+52%	1.04		
	-50%	-92%	1.84	+194%	3.88	+1.5%	0.03		
VmaxL	+50%	-51%	1.02	478%	9.56	120%	2.4		
	-50%	-10%	0.2	-84%	1.68	-34%	0.68		
Iopt0	+20%	-22%	1.1	-31%	1.55	-25%	1.25		
	-20%	+29%	1.45	+62%	3.1	+39%	1.95		
KNO3S	+50%	-1%	0.02	+0.6%	0.012	-0.55%	0.011		
	-50%	+1%	0.02	-0.6%	0.012	+0.48%	0.0096		
KNO3L	+50%	+0.45%	0.009	-0.26%	0.0052	+0.22%	0.0044		
	-50%	-0.5%	0.01	+0.3%	0.006	-0.24%	0.0048		
KSiL	+50%	+2.4%	0.048	-45%	0.9	-13%	0.26		
	-50%	-28%	0.56	+204%	4.1	+47%	0.94		
TNO3d	+50%	+0.5%	0.01	-0.12%	0.0024	0.21%	0.0042		
	-50%	-1.5%	0.03	+0.9%	0.018	-0.7%	0.014		
TSiOH4d	+50%	-16%	0.32	+105%	2.1	+23%	0.46		
	-50%	-0.7%	0.014	-65%	1.3	-21.6%	0.432		


Relate change =
$$\frac{\Delta \alpha}{\alpha}$$

α ——parameter


Sensi-degree(Š) =
$$\left| \frac{\Delta F_{F}}{\Delta \alpha_{\alpha}} \right|$$
 α —parameter; F—variable


Sensitivity of Regime Composition to Si Half Saturation

Sensitivity of PS/PL Ratio to Si concentration out of MLD

Regime Composition change brought by P considered in Model

Phosphor effect on Total Phytoplankton Biomass Annually

Parameter	Raised reduced	PS change rate and Š		PL change rate and Š		PT change rate and Š		Ratio change rate and Š	
KHPO4S	+50%	-34%	0.68	+7.3%	0.146	+13%	0.26	-31.5%	0.63
	-50%	+148%	2.96	-28%	0.56	-13.6%	0.272	+85.5%	1.71
KHPO4L	+50%	+50%	1.0	-61.2%	12.24	-52.3%	1.046	+110%	2.2
	-50%	-11.5%	0.23	+36%	0.72	+32%	0.64	-65%	1.3
THPO4d -	+50%	+36.6%	0.732	+26%	0.52	+27%	0.54	-41.2%	0.824
	-50%	-38%	0.76	-76%	1.52	-73.2%	1.464	42.4%	0.848

Conclusions

- Phytoplankton biomass of both kinds has one peak during a year. PS mushrooms earlier and gets peak of 1.70 μ molN/L in May, and then declines until it reaches minimum in January at 0.35 μ molN/L. PL mushrooms later and gets peak of 0.90 μ molN/L, and declines then until the minimum in early January at 0.18 μ molN/L.
- Annual phytoplankton biomass movement has remarkable correlativity with that of Light Intensity at sea surface, rather than other physical factors.
- For low-trophic-level parameters, phytoplankton biomass is sensitive to Max nutrient uptake rate, half saturations of phosphor and silicate, out-MLD concentration of silicate. Those of silicate can make regime shift in phytoplankton community. It's silicate-limit mainly, while Nitrate is no longer limit factor.

- Interposition of phosphor decreases biomass of PS sharply, while that of PL increases largely, so as to PS/PL ratio comes down. Total biomass of phytoplankton becomes 22% less.
- Biomass of phytoplankton are sensitive to half saturation and out-MLD concentration of phosphor, so is PS/PL ratio. However, it remains lower than 1.0 when phosphor is under consideration, although the parameters change in reasonable range. (Changsheng Shen et al, 1999)
- Reason for phosphor effect on the ratio is not clear, but way effecting on K (attenuant coefficient) by limiting PhyS is hypothesized.

- Explore mechanism of the Model and of the ecosystem of Jiaozhou Bay, by sensitivity analysis for more parameters.
- To make clear the reason phosphor affecting on regime composition(PS/PL Ratio).
 Observation data of PAR from Jiaozhou Bay
- Multi-box model with water exchange and Xdimension model.

Thank You