Tidal Energy and the 18.6 Year Cycle in the Bering Sea

Mike Foreman¹, Josef Cherniawsky¹, Patrick Cummins¹, Phyllis Stabeno²

¹Institute of Ocean Sciences, Sidney BC, Canada
²Pacific Marine Environmental Laboratory, Seattle WA USA

Outline:
- Background
- Tidal model & inverse
- Energy fluxes and dissipation
- 18.6 year cycle
- Summary

Acknowledgements:
- Andrew Bennett, Boon Chua, Gary Egbert
- David Greenberg, Dan Lynch, Chris Naimie
Background & Motivation

- complex tidal elevations & flows in the Bering Sea
 - Large elevation ranges in Bristol Bay
 - Large currents in the Aleutian Passes
 - both diurnal & semi-diurnal amphidromes
 - Large energy dissipation (Egbert & Ray, 2000)
 - Interactions with seasonal ice cover
 - Internal tide generation from Aleutian passes (Cummins et al., 2001)
Background & Motivation

- Wide shelf, complex bathymetry, narrow entrances
- Relatively large diurnal currents that will have 18.6 year modulations

- Difficult to get currents & energy balance right with only a forward model
- Need to incorporate observations
 - Data assimilation
The Numerical Techniques

- Barotropic finite element method FUNDY5SP (Greenberg et al., 1998):
 - linear basis functions, triangular elements
 - $e^{-i\omega t}$ time dependency, $\omega = \text{constituent frequency}$
 - solutions (η, u, v) have form Ae^{ig}
 - Provides an initial solution

- FUNDY5SP adjoint model
 - development parallels Egbert & Erofeeva (2002)
 - representers: Bennett (1992, 2002)
 - allows improvement of initial solution by assimilating observations
Grid & Forcing

- **variable resolution:**
 - 50km to less than 1.5km
 - 29,645 nodes, 56,468 triangles
- **Forcing:**
 - Tidal elevation boundary conditions from Topex Poseidon crossover analysis
 - Tidal potential, earth tide, self-attraction & loading
Assimilated Tidal Observations

- from tidal analysis at T/P crossover sites
 (Cherniawsky et al. 2001)
Elevation Amplitude & Major Semi-axis of a sample M_2 Representer

(amplitude normalized to 1 cm)

- these fields are used to correct initial model calculation
Model Accuracy Assessment:

average D (cm) at 288 T/P crossover sites

$$D = \left\{ (A_0 \cos g_0 - A_m \cos g_m)^2 + (A_0 \sin g_0 - A_m \sin g_m)^2 \right\}^{1/2}$$

<table>
<thead>
<tr>
<th></th>
<th>M_2</th>
<th>K_1</th>
<th>N_2</th>
<th>O_1</th>
<th>S_2</th>
<th>P_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior model</td>
<td>5.4</td>
<td>3.8</td>
<td>1.8</td>
<td>2.9</td>
<td>4.0</td>
<td>1.3</td>
</tr>
<tr>
<td>With T/P assimilation</td>
<td>2.6</td>
<td>2.1</td>
<td>1.1</td>
<td>1.6</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Corrected Elevation Amplitudes
M_2 vertically-integrated energy flux

(each full shaft in multi-shafted vector represents 100KW/m)
K_1 vertically-integrated energy flux
(each full shaft in multi-shafted vector represents 100KW/m)
Energy Flux Through the Aleutian Passes & Bering Strait
(Vertically integrated tidal power (GW) normal to transects)

<table>
<thead>
<tr>
<th>Pass(es)</th>
<th>M\textsubscript{2}</th>
<th>N\textsubscript{2}</th>
<th>S\textsubscript{2}</th>
<th>K\textsubscript{1}</th>
<th>O\textsubscript{1}</th>
<th>P\textsubscript{1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unimak</td>
<td>2.7</td>
<td>0.2</td>
<td>0.0</td>
<td>0.4</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>Akutan</td>
<td>1.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Samalga</td>
<td>10.0</td>
<td>0.8</td>
<td>0.0</td>
<td>3.4</td>
<td>1.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Amukta</td>
<td>12.5</td>
<td>1.1</td>
<td>-0.4</td>
<td>7.3</td>
<td>1.2</td>
<td>0.8</td>
</tr>
<tr>
<td>Seguam</td>
<td>1.6</td>
<td>0.1</td>
<td>-0.1</td>
<td>-2.7</td>
<td>-1.8</td>
<td>-0.2</td>
</tr>
<tr>
<td>Andreanof</td>
<td>2.1</td>
<td>0.2</td>
<td>-0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Tanaga</td>
<td>4.2</td>
<td>0.3</td>
<td>0.0</td>
<td>-3.3</td>
<td>-0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>Amchitka</td>
<td>8.0</td>
<td>0.6</td>
<td>-0.1</td>
<td>22.9</td>
<td>12.2</td>
<td>2.3</td>
</tr>
<tr>
<td>Buldir</td>
<td>5.8</td>
<td>0.4</td>
<td>0.2</td>
<td>7.9</td>
<td>1.6</td>
<td>0.9</td>
</tr>
<tr>
<td>Near</td>
<td>-8.4</td>
<td>-0.2</td>
<td>0.0</td>
<td>-4.8</td>
<td>0.2</td>
<td>-0.6</td>
</tr>
<tr>
<td>Kamchatka</td>
<td>-8.3</td>
<td>-0.3</td>
<td>-0.4</td>
<td>-9.5</td>
<td>-1.9</td>
<td>-1.3</td>
</tr>
<tr>
<td>Bering Strait</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>31.2</td>
<td>3.3</td>
<td>-0.9</td>
<td>24.9</td>
<td>13.0</td>
<td>2.3</td>
</tr>
</tbody>
</table>
M₂ Dissipation from Bottom Friction (W/m²)

- Mostly in Aleutian Passes & shallow regions like Bristol Bay
- Bering Sea accounts for about 1% of global total of 2500 GW
- K_1 dissipation mostly in Aleutian Passes, along shelf break, & in shallow regions
 - Strong dissipation off Cape Navarin as shelf waves try to turn corner
 - Enhances mixing and nutrient supply → biological implications
- Bering K_1 dissipation accounts for about 7% of global total of 343GW
18.6 Year Nodal Cycle

- Declination of moons’ orbit to equator varies between 18.3° and 28.6° over 18.61 year period
- leads to a small tidal constituent with 18.6 yr period & modulation of most major constituents
 - ~ ±4% for M₂
 - ~ ±13% for K₁
 - ~ ±19% for O₁
- K₁/O₁ modulations synchronous but out of phase with M₂
- K₁/O₁ modulations: max in 2006, min in 1997
18.6 Year Nodal Cycle

- Model estimates 19% increase in incoming tidal energy flux to Bering Sea from 1997 to 2006
 - Regional variations with relative magnitude of constituent amplitudes
 - 36% increase in Amchitka Pass

- Expect variations in energy dissipation, mixing, ice cover, and biological productivity
 - Dissipation varies as cube of velocity
 - Parker et al. (1995) found correlation with Pacific halibut recruitment

Pacific Halibut
Hippoglossus stenolepis
Ratio of average bottom friction dissipation in April 2006 to that in April 1997
Summary

- many interesting physical & numerical problems associated with tides in the Bering Sea
- representer approach is instructive way to solve the inverse problem
- 18.6 year nodal cycle
 - significant variation in energy dissipation in regions where diurnal tides dominate
 - should correlate with water properties (next speaker) & biological productivity
- More details in Foreman et al., Nov 2006 issue of *Journal of Marine Research*