Kuroshio and Oyashio current system: variability and impact on ecosystem

Ichiro Yasuda
Ocean Research Institute
Univ. of Tokyo

Recent progress of physical & fisheries oceanography in the Oyashio and Kuroshio Extension after the review of Yasuda (2003 JO PICES LaPaz symposium).

- NPIW/Oyashio and climate bi-decadal variations
- Kuroshio Extension and species replacement of small pelagic fishes
NPIW, Oyashio and Bi-decadal North Pacific variability

NPIW: is defined as intermediate-depth salinity minimum at 26.6-26.9 and its adjacent water and distributes in the mid-depth of North Pacific Subtropical Gyre
Reid (1965)-hypothesis:

1) freshening along the subarctic cyclonic path
Reid (1965)-hypothesis:

1) Freshening along the subarctic cyclonic path
2) Lateral eddy diffusion/exchange along the subtropical/subarctic gyre boundary
Reid (1965)-hypothesis:

1) Freshening along the subarctic cyclonic path
2) Lateral eddy diffusion/exchange along the subtropical/subarctic gyre boundary
3) Advection of subtropical gyre clockwise circulation
Reid (1965)-hypothesis:

1) Freshening along the subarctic cyclonic path
2) Lateral eddy diffusion/exchange along the subtropical/subarctic gyre boundary
3) Advection of subtropical gyre clockwise circulation
4) Talley (1991, 1993) showed freshening source is in the Okhotsk Sea and lateral exchange largely occurs near the east coast of Japan

These views regard NPIW just as a dye that is only diffused by eddies.
New hypothesis: Direct cross-gyre Oyashio transport produces NPIW
(Yasuda et al. 1996; Yasuda 1997)

Oyashio low-salinity and low-PV water reached the Kuroshio Extension where new NPIW is formed (Yasuda et al. 1996)
New hypothesis: Direct cross-gyre Oyashio transport produces NPIW
(Yasuda et al. 1996; Yasuda 1997)

The low-salinity and low-PV Oyashio water comes from the Okhotsk Sea
(Yasuda 1997JGR)
SAGE (SubArctic Gyre Experiment: 1997-2002) intensive observations confirmed and quantified the direct cross-gyre transport as about 5-7Sv

Yasuda et al. 2001 JGR; Katsumata et al. 2001 GRL; Yoshinari et al. 2001 GRL
Hiroe et al. 2002 DSR; Yasuda et al. 2002 JGR; Shimizu et al. 2003 JPO
Ono et al. 2003 JO Masujima et al. 2003 JO; Iwao et al. 2003 JO, Miyao & Ishikawa
New driving force for NPIW circulation: Strong tidal mixing around Kuril Straits

Nakamura et al. (2000ab) suggested that strong diurnal tides induce large Vertical mixing of $O(10^2)$ cm2/s that is possible from the Thorpe-scale Analysis using density inversions (Yagi & Yasuda POC-Poster)
Modelling of NPIW considering large diapycnal mixing around the Kuril Straits
(Nakamura et al. 2004)

GCM of (Nakamura, Awaji et al. 2004JO) showed that the strong diapycnal mixing around the Kuril Straits (~200cm²/s) [Nakamura et al. 2000] cause upwelling and make salinity high that enhances the dense shelf water production in the northwestern Okhotsk Sea shelf and promotes the Oyashio cross-gyre flow.
Theory of direct Oyashio cross-gyre transport

(Tatebe and Yasuda 2004 JPO)

\[T_{WBC} = -\frac{1}{\rho} \int k \cdot \nabla \times \tau \, d\mathbf{x} + \frac{f}{\rho} \int w_2 \, d\mathbf{x} - W_2 \]

Cross-gyre transport is proportional to diapycnal upwelling \(W_2 \)

Oyashio southward extension enhances with the increase of \(W_2 \)
New Hypothesis: Tide-induced NPIW

1) Strong tidal mixing makes surface salinity high
New Hypothesis: Tide-induced NPIW

1) Strong tidal mixing makes surface salinity high
2) The saline water is transported to the northwestern shelf region
New Hypothesis: Tide-induced NPIW

1) Strong tidal mixing makes surface salinity high
2) The saline water is transported to the northwestern shelf region
3) Sinking and formation of dense shelf water and mid-depth freshening
New Hypothesis: Tide-induced NPIW

1) Strong tidal mixing makes surface salinity high
2) The saline water is transported to the northwestern shelf region
3) Sinking and formation of dense shelf water and mid-depth freshening
4) Diapycnal upwelling due to strong tidal mixing from deep to mid-depth
New Hypothesis: Tide-induced NPIW

1) Strong tidal mixing makes surface salinity high
2) The saline water is transported to the northwestern shelf region
3) Sinking and formation of dense shelf water and mid-depth freshening
4) Diapycnal upwelling due to strong tidal mixing from deep to mid-depth
5) Direct cross-gyre Oyashio transport is induced and NPIW is formed

NPIW is not just a dye!
If the tide changes, the North Pacific circulation can change.
Bidecadal variations in Oyashio intermediate water and NPI & PDO

Bi-decadal period oscillation in Oyashio is synchronized with NPI bidecadal Osci.

However, this signal is not directly from atmosphere because the waters are not outcropped even in winter.

Ono et al. (2001)
Watanabe et al. (2001)
18.6-year period nodal tidal cycle

Amplitude of the diurnal tides (K1,O1) modulates by max. 20%

Many reports on the nodal cycle in the atmosphere and oceans (Maximov & Smirnov 1970; Currie 1984 etc.)
Loder & Garret (1978) Royer (1993) indicated the tidal mixing as a probable cause

Inclination of moon orbit to the earth equatorial surface changes as 23.4 ± 5deg with 18.6-year period (James Bradley, 1798)

Strong tidal mixing around Kuril Islands up to Kv=O(100)cm2/s makes summer SST cooler.
We found bi-decadal oscillations of AOU, temperature, and thickness in the northwestern subarctic Pacific and the Okhotsk Sea. These temporal variations are synchronized with the 18.6-year period nodal tidal cycle. This could be explained by the nodal modification of the vertical mixing around the Kuril Straits.

Okhotsk-Oyashio bi-decadal oscillation and 18.6-year cycle
Osafune & Yasuda (2006JGR)
Upper-layer (0-100m) salinity difference (Strong – Weak tide)

- Upper S is high around the strong tidal mixing region when the diurnal tide is strong
 - Aleutian Straits, Continental Shelves, Kuril Straits
 (Osafune & Yasuda POC Paper-3150)
18.6-year tidal cycle is seen in the climate indices of winter-NPI/PDOI/MOI
(Yasuda et al. 2006GRL)

In the period of strong diurnal tide, negative-PDO, positive-NPI and Weak winter East Asian Monsoon. The phase looks delayed for the nodal Cycle, implying the influence from the ocean to the atmosphere.
Winter SST/SLP difference (Strong-Weak):
warm KOE SST ↔ weak winter-Aleutian Low & Monsoon (Yasuda et al. 2006GRL)

12-25-year bandpassed Feb-SST/SLP difference

18.6-year nodal cycle acts as a basic forcing for the bi-decadal ocean/climate
Air-sea coupled model experiment is going on with Prof. Hasumi in CCSR.
Bi-decadal and Penta-decadal North Pacific oscillations (Minobe 1997; 1999)

Bi-decadal and Penta-decadal oscillations in the North Pacific are Synchronized (Minobe 1999). Penta-decadal oscillation can be excited by bi-decadal oscillation in a periodic-forced delayed-oscillator model (Minobe and Jin 2005).
Penta-decadal Oscillation in the Kuroshio Extension winter-SST and Japanese sardine (Noto & Yasuda 2006FO submitted)

Catch variation of Japanese sardine corresponds to 50-70 year period SST variations in the Kuroshio Extension.
Survival rate of Japanese sardine and winter-spring SST in the Kuroshio Extension (Noto & Yasuda 1999 CJFAS)

- Mortality coefficient of Japanese sardine from post-larvae to age-1 co-varied with winter-spring SST in the Kuroshio Extension and southern recirculation regions (KESA: 145-180E, 30-35N) on a year-to-year basis.
- High SST: high-mortality
 Low SST: low-mortality
- SST-jump in 1988 and successive warm-SST may lead to sardine collapse
- Low-SST from 1970 to 1987 may lead to large peak.

Mortality coefficient M: $N = N_0 \cdot \exp(-M)$
Mixed layer depth & sardine mortality
(Nishikawa & Yasuda 2006 submitted FO)

Correlation map of March-MLD & mortality (1979-1993)

- Negative correlation between winter MLD and mortality
- Large mortality occurred in year of shallow winter MLD

Interannual variation of mortality & March-MLD in KE

$r = -0.58$ (98% significant level)
Mixed layer depth in March and Japanese sardine/Pacific saury (Nishikawa and Yasuda, 2006)

- Winter-deep MLD → better survival of sardine
- Winter-shallow MLD → abundant saury

Phytoplankton bloom is found to occur in winter in the KE even though MLD is large compared with the other season.
Relation of winter-MLD and Chl-a

- In winter, Chl-a decreases with MLD.
- Total Chl-a integrated in the mixed layer increases with MLD for MLD<250m, almost disappears for MLD>250m.
- In the period of MLD>250m, food density for winter saury larvae could be quite low.
- Deep-MLD period corresponds to low large-size saury population.

MLD vs Chl-a (Jan-Mar)

\[y = -0.0043x + 1.438 \]

\[R^2 = 0.3389 \]

MLD (SST-0.5) vs Integ. Chl-a

\[y = 0.6781x - 14.251 \]

\[R^2 = 0.3753 \]
Variability of plankton bloom using NEMURO model (Nishikawa & Yasuda PICES-14)

Deep winter MLD Phytoplankton bloom occur in late April - May
Shallow winter MLD Phytoplankton bloom occur in March - early April

• Match-mismatch of plankton bloom to winter-saury and spring-sardine could determine the species replacement between sardine and saury.
Bloom occurred during January to March, when winter MLD was shallow as in 1999. Pacific saury can use this winter bloom; while Japanese sardine possibly needs big spring bloom.
Final Remarks

- Changing view of Northwestern Pacific circulation, long-term variability and ecosystem
 - Vertical mixing and 18.6-year tidal cycle are important to explain the North Pacific inter-decadal variability
 - Timing of plankton bloom and related Mixed layer process and biological response are important to explain the species replacement of small pelagic fishes