Modeling interannual variation of spring-summer transport of plankton and juvenile salmon in coastal regions of the northeast Pacific

Harold P. Batchelder and Brie Lindsey
COAS, Oregon State University

Roadmap
An introduction to what we are doing and why.

Methods
Assessment of Model Physics
Tentative Conclusions/Summary
Coho salmon, *Onchorhynchus kisutch*, chosen as study species since populations (catch) span and vary inversely in CGOA and CCS, and US GLOBEC and other programs sample in both systems over multiple years.
Salmon Life History

- Spawning
- Eggs
- Juveniles
- Ocean
 - Climate
 - Ocean Physics
 - Nutrients
- Coastal Shelf Regions
 - Adults
 - Predators
 - Competitors
 - Diseases/Parasites
- Harvest
- Other Ocean Areas
 - Maturing

Freshwater

Estuary

Other Ocean Areas

Courtesy of Ric Brodeur
5-m fluorescence (color)
Copepod biomass (bars)
Bird biomass (grey circles)

5-m temperature (color contour)
Juv. Chinook (yellow circles)
Juv. Coho (magenta circles)
Humpback sightings (grey circles)

August 2000 Survey

From Batchelder et al. (2002)
Locations of sampling transects in the NEP for which multiple year fish trawling (thus diet data), zooplankton sampling and CTD's are available.

Ocean Carrying Capacity (OCC)
GLOBEC Seward Line
Southeast Alaska (SEAK)
DFO Salmon Trawling
BPA Salmon Program
GLOBEC CCS Program
Processes and Environmental Variables Influencing Fish Growth and Number

Spatially-Explicit Model

Age, Size, Number of Fish

Physical Exchange \(B, \varepsilon \)

Predation \(T, B, \varepsilon, L \)

Ingestion \(T, B, \varepsilon, L, P \)

Egestion, \(P \)

Migration \(T, B, P \)

Starvation \(T, B, P, \varepsilon \)

Respiration \(T, B, \varepsilon \)

Bioenergetic Model

\(T = \) Temperature; \(B = \) Behavior; \(\varepsilon = \) Turbulence; \(P = \) Prey; \(L = \) Light
Modeling of Juvenile Salmon during early Ocean Residence

- Bioenergetics model not started yet
- Adapting basic coupled bioenergetic model core to work with Regional Ocean Modeling System (ROMS) stored fields
- Evaluating fidelity (reality) of simulated ocean physics (more qualitative than quantitative at this point)
U.S. GLOBEC Nested Model Domains

Delta x = 20 40 km Delta x = 10 km Delta x = 3 km Delta x = 1 km
NEP Implementation

Domain: 20 - 73N, 115 - 210E

ROMS: 226 x 642 x 42 gridpoints

Subdaily (6 hr) T42 CORE wind and fluxes (Large and Yeager)

Initial/boundary conditions provided by CCSM-POP hindcast model

Forward run for 1958-2004—includes multiple El Nino’s, Regime Shifts, and 2002 cold intrusion

Daily averaged physical snapshots of velocity, temperature, etc.

Especially want to thank Enrique Curchitser (Rutgers) and Kate Hedstrom (UAF) for providing these model fields.
NEP Particle Tracking Details

- Particles are seeded into 3 regions:
 - **Central Region (155 particles)** - to examine interannual variability in transport of the North Pacific Current and determine patterns of bifurcation
 - **CGOA (159 particles at all grid points <700 m bottom depth)**
 - **CCS (102 particles at all grid points <700 m bottom depth)**
- **Initial Depth of all particles is 10 m**
 - Some simulations have fixed depth (stay at 10 m)
 - Others experience vertical advection (change depth)
- **Only consider advection (no vertical diffusion yet)**
How well do the ROMS NEP physics match data from the real NEP ocean?

1) Compare SSH from the model with altimetry
 1) Large scale climatology
 2) Seasonality
2) Compare SST
3) Compare Subsurface Temperatures
4) Interannual Variability in Strength of the Alaskan Gyre Circulation and Bifurcation of the North Pacific Current (particle tracking)
Climatological Dynamic Height from Strub and James (2002)

1958-2004 Climatological SSH from Model
Both are contoured at 2cm intervals
Climatological Seasonal SSH Anomaly from Strub and James (2002)

Both are contoured at 2cm intervals

July SSH Anomaly

Negative SSH Anomalies Along Coast
AC - Weakened
CC - Intensified

Climatological Seasonal SSH Anomaly from Strub and James (2002)
SST - Seasonal Cycle

January SST

July SST

Model

Data Climatology

Sea surface temperature (deg C)
The 1976-77 Regime Shift SST Patterns

From Schwing et al. (2002)

Note: Left panel is May only; Right is Annual

The 1976-77 Regime Shift SST Patterns
Subsurface Temperature: Line P Seasonal Climatology

Model has warmer subthermocline temperatures, and weaker cross-shore isotherm slope suggesting model is underestimating Alaska Gyre current velocity.
155 particles seeded into Central Region

Only 55 particles between 47.5 – 52.5 N (nearest Stn P)
Percentage of northward-moving particles of central points

Most Northward
1989

Least Northward 1987

% of all central points that moved North

Year

1987 Trajectories

15 April - 14 June

1989 Trajectories
Summary

1) The current NEP model hindcast for 1958-2004 is a significant improvement over earlier simulations.

1) Climatological SSH and SST match observations well at largest scales.

2) Model shows reasonable seasonal variation in coastal velocities (intensified AK gyre in winter; intensified CC in summer).

3) Modeled subsurface seasonal temperatures (at 200-600m) along Line P are ca. 2°C warmer than observations.

4) Alaska Gyre geostrophic transport through Line P is weak relative to observations.

5) 10 m particle trajectories respond to instantaneous velocities including substantial mesoscale velocity (eddies).

2) However, is the NEP model product sufficient to use as the basis for coupled biophysical modeling of salmon, euphausiids, and LTL dynamics?

1) Temperature is important for bioenergetic models, but juvenile salmon are mostly in the upper 20-30 meters (where the modeled T may be OK).

2) Mixed layer depth and stratification intensity are important for controlling nutrient flux into the euphotic zone. Increased nutrient fluxes due to weak stratification may lead to early and possibly sustained phytoplankton blooms, etc.

3) Next step is to evaluate model shelf properties and simulate salmon growth and transports. For the answer to (2) come to PICES XVI in Victoria.