Interactions of multiple factors contribute to infestations of jellyfish

Jennifer E. Purcell

Western Washington University, USA
National Sun Yat-sen University, Taiwan, ROC

Co-authors:
Shin-ichi Uye, Hiroshima University, Japan
Wen-Tseng Lo, NSYSU, Taiwan, ROC
Casimir Rice, Watershed Prog, NOAA/NWFSC, USA
Why should we care about jellyfish?

- Important consumers of ichthyoplankton and zooplankton (both predators and competitors of fish)
- Great abundances interfere with fishing
- Clog power and desalination plant intakes
- Cause health concerns for swimmers, reduce tourism
- Generally detrimental to human enterprise, except for jellyfish fisheries
Scyphomedusae

- Semaestome
- Coronate
- Rhizostome
Cubomedusae (box jellies)
Hydromedusae

Leptomedusae

Anthomedusae

Trachymedusae
Jellyfish life cycle

ephyra

strobilation

medusa

Polyp budding polyps

http://jellieszone.com/scyphomedusae.htm
Siphonophores

Cystonects
Calycophorans

Physonects
Cydippid ctenophores
Lobate ctenophores
Possible causes of jellyfish increases

- Climate change
- Eutrophication
- Aquaculture
- Fishing
- Species introductions
- Multiple factors
Climate change

- Directly affects jellyfish growth and reproduction rates
- Changes ocean productivity
Pelagia noctiluca in the Mediterranean Sea

1805-1985 from Goy et al. (1989)

- Warm temperature
- Low rainfall
- High atmospheric pressure
Chrysaora quinquecirrha in Chesapeake Bay 1960-1995

- Low Jan-Jun streamflow
- High salinity
- Warm May temperature
- Negative NAO index

From Cargo & King (1991)

From Purcell & Decker (2005)
Aurelia spp.
around the world

[map from Dawson & Martin (2001)]
Aurelia labiata

Total polyp & ephyra production 104 d

7, 10, 15°C

Salinity 20, 27, 34

(n = 24)

Warm temperature increased number and proportion of jellyfish

Similar results for 2 other species

<table>
<thead>
<tr>
<th></th>
<th>Temp.</th>
<th>Salinity</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td># Buds</td>
<td><0.0001</td>
<td><0.01</td>
<td><0.001</td>
</tr>
<tr>
<td># Ephyrae</td>
<td><0.0001</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Total</td>
<td><0.0001</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Ephy/total</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
Possible causes of jellyfish increases

- Climate change
- Eutrophication
Eutrophication

• Increases food
• Changes food sizes
• Leads to hypoxia
• Reduces water clarity
Eutrophication changes the food web structure

First proposed by Greve & Parsons, 1977; modified by Sommer et al. 2002
Hypoxia (low dissolved oxygen) occurs world-wide in coastal waters

- $< 2-3 \text{ mg } O_2 \text{ l}^{-1}$ is considered hypoxic
- Fish avoid or die in waters of 2 mg $O_2 \text{ l}^{-1}$
Jellyfish are more tolerant of hypoxia than fish

- *Mnemiopsis* ctenophores live for > 72 h at 0.5 mg O₂ l⁻¹
- *Chrysaora quinquecirrha* medusae live > 96 h at 1 mg O₂ l⁻¹; their polyps can live and reproduce at 0.5 mg O₂ l⁻¹
- Several other jellyfish species are very tolerant of hypoxia (reviewed in Purcell et al. 2001; see Rutherford & Thuesen 2005)
Eutrophication and development reduce water clarity

- Most fish are visual feeders and prefer larger prey; smaller foods in turbid water are poor for fish
- Jellyfish are non-visual feeders; small prey in turbid waters are OK
Evidence for jellyfish predominance in a Norwegian fjord with reduced water clarity (Eiane et al. 1999)
Possible causes of jellyfish increases

- Climate change
- Eutrophication
- Aquaculture
Aquaculture

• Adds substrates for jellyfish polyps
• Adds foods
• Directly adds jellyfish
Oyster racks in Tapong Bay, Taiwan before 2003 (Lo, unpubl.)
Jellyfish in Tapong Bay 1999-2005 before and after oyster pen removal (Lo, unpubl.)
Many different structures may add substrate for polyps and hydroids

• Aquaculture pens
• Docks and marinas
• Breakwaters
• Oil platforms
• Artificial reefs
Culture and release of edible jellyfish to increase fishery

- Rhizostome jellyfish *Rhopilema esculenta* are reared and released.
Possible causes of jellyfish increases

- Climate change
- Eutrophication
- Aquaculture
- Fishing
Fishing

• Removes predators of jellyfish
• Removes competitors of jellyfish
• Changes food web structure
Leatherback turtles are in severe decline in the Pacific, and eat jellyfish.

Turtle declines are due to:
- Intentional harvest
- Fouling in fishing gear
- Collisions with ships
- Pollution

Nesting sites in Malaysia

http://www.seaturtlestatus.org/

Photo by K Shanker
There are many other predators of jellyfish that may be reduced by fishing

- Other turtle species
- Many fishes, notably molas, chum and pink salmon, butterfish, mackerels, dogfish sharks
- Birds, such as parakeet auklets, albatrosses
Fishing reduced anchovy and sardines competitors for zooplankton in Namibian Benguela Current (Lynam et al. 2006)

2001 Chrysaora hysoscella

Aequorea sp.
Possible causes of jellyfish increases

- Climate change
- Eutrophication
- Aquaculture
- Fishing
- Species introductions
Species introductions

- Several jellyfish species have been accidentally introduced around the world
 - *Craspidacusta sowerbii* -- freshwater jellyfish in all continents ex. Antarctica
 - *Moerisia lyonsi, Blackfordia virginica, Maeotias inexspectata* – many estuaries in US
 - *Cordylophora caspia* – US Great Lakes
 - *Aurelia aurita* -- multiple introductions
 - *Rhopilema nomadica* – Mediterranean Sea
 - *Phyllorhiza punctata* – E. Pacific, SW Atlantic, Gulf of Mexico, Caribbean and Mediterranean seas
 - *Cassiopea andromeda* – Hawaii and other places
 - *Drymonema dalmatinum* – Gulf of Mexico
 - Ctenophores *Mnemiopsis leidyi & Beroe ovata*– to Black Sea, spread to Azov, Mediterranean, and Caspian seas
Possible causes of jellyfish increases

- Climate change
- Eutrophication
- Aquaculture
- Fishing
- Species introductions
- Multiple factors
Chrysaora melanaster in the SE Bering Sea 1975-2005 (from Brodeur et al. in press)

Photo by K. Raskoff
Favorable conditions for *C. melanaster* in the SE Bering Sea 1975-2005 (Brodeur et al. in press)

- **Climate**
 - Temperature (moderate)
 - Ice cover (moderate)
 - Mixing (low in spring)
 - Currents (low)
- **Food web affects**
 - Amount, timing, and size of food available (Late spring bloom, smaller copepods)
- **Fishing**
 - Competitor abundance—walleye pollock are heavily fished

All factors affect polyps AND medusae
Fish and Jellyfish in Puget Sound, WA, USA, May-Sept 2003 (C. Rice, unpubl.)
Puget Sound coastline

North
Bellingham

South
Seattle
Fish and jellyfish biomass in Puget Sound (May – September 2003)

Rosario
- Jellyfish: 42.57%
- Surf Smelt: 15.70%
- Herring: 14.29%
- Other Fish: 3.78%
- Salmon and Traw: 2.26%
- Sand Lances: 10.47%
- Sticklebacks: 1.01%

Whidbey
- Jellyfish: 87.38%
- Surf Smelt: 8.07%
- Herring: 1.43%
- Other Fish: 0.30%
- Salmon and Traw: 0.14%
- Sticklebacks: 0.26%
- Sand Lances: 0.41%

Main
- Jellyfish: 88.89%
- Surf Smelt: 0.64%
- Herring: 1.43%
- Other Fish: 0.30%
- Salmon and Traw: 8.07%
- Sticklebacks: 0.26%
- Sand Lances: 0.41%

South Sound
- Jellyfish: 87.38%
- Surf Smelt: 9.76%
- Herring: 26.74%
- Other Fish: 5.81%
- Salmon and Traw: 2.24%
- Sticklebacks: 0.01%
- Sand Lances: 0.17%
Possible factors affecting fish and jellyfish in Puget Sound, WA, USA (C. Rice unpubl.)

- Climate?
- Eutrophication and development
 - Greater in south, favor jellies (high nutrients, low oxygen, reduced water clarity)
- Fishing?
- Aquaculture?
 - Greater in south, more chum salmon predators, and other competitors

Factors affect polyps and medusae
What does this mean for the future?

- Climate change
- Eutrophication
- Aquaculture
- Fishing
- Species introductions
- Multiple factors

Increasing

Will jellyfish populations increase? If they do, is that a problem?
Human problems with jellyfish

- Interfere with fishing – clog nets, ruin catch
- Kill fish in aquaculture pens
- Clog intake screens of power and desalination plants causing shutdowns
- Sting swimmers and fishermen
Are jellyfish populations increasing?

Problems with jellyfish in Japan (Uye, unpubl.)

Aurelia aurita

Nemopilema nomurai (Natl Geogr)
Fisheries catches of the future?
17 Jan 04

Aurelia labiata
10 polyps cm\(^{-2}\)

17 Feb 04

13.4 disks polyp\(^{-1}\)
est. 4,550 ephyrae
Fig. 2. Seasonal changes of Temperature, Salinity, chlorophyll a and precipitation in Tapong Bay before and after the removal of oyster culture pens. Dashed lines indicate annual means.
Fig. 3. Seasonal changes in numerical abundance, species number and diversity of copepods in Tapong Bay before and after the removal of oyster culture pens. Dashed lines indicate annual means.
Beroid ctenophores