Community structures and photosynthetic physiological conditions of phytoplankton in the NW subarctic Pacific during SEEDS and SEEDS-II

K. Suzuki¹, H. Saito², A. Hinuma³, H. Kiyosawa⁴,
A. Hattori¹, R. M. L. McKay⁵, A. Kuwata²,
K. Kawanobe⁶, T. Saino³, and A. Tsuda⁻

¹Hokkaido Univ., ²Tohoku Natl. Fish. Inst., FRA, ³Nagoya Univ., ⁴Mar. Biol. Res. Inst., ⁵Bowling Green State Univ., ⁶Independent, ⁷Univ. Tokyo

Phytoplankton community structure

Photosynthetic physiology of phytoplankton

Here we also briefly discuss why a diatom bloom did not occur during SEEDS-II.

SEEDS and SEEDS-II

SEEDS : 18 July - 1 August 2001 (Days 0-13)

SEEDS-II: 19 July - 21 August 2004 (Day 0-32)

Changes over time in chlorophyll *a* concentrations at 5 m inside the each Fe patch during SEEDS and SEEDS-II

Temporal changes in Chl *a* levels at 5 m inside and outside the Fe patch during SEEDS-II

Relative contributions of each size class of phytoplankton to Chl *a* levels at 5 m inside the each Fe patch

Dominant diatom species during the bloom of SEEDS

Chaetoceros debilis

Max. 1x10⁴ cells ml⁻¹

Max. 1.8 d⁻¹ (= 2.6 doublings d⁻¹)

(Tsuda et al., 2005)

Chaetoceros atlanticus

Eucampia groenlandica

Chaetoceros concavicornis

Pseudonitzschia turgidula

Contributions of each phytoplankton group to Chl *a* biomass at 5 m inside the Fe patch as estimated by CHEMTAX (HPLC pigment data)

Changes over time in the cell densities of cryptophytes at 5 m during SEEDS-II as measured by flow cytometry

Photosynthetic potentials of total algal assemblages at 5 m inside the Fe patch during SEEDS and SEEDS-II as estimated by FRRf

No significant difference (p > 0.05) between SEEDS and SEEDS-II on surface $F_{\rm v}/F_{\rm m}$ ratios until Day 13.

Overall, the photosynthetic physiological condition of phytoplankton was improved after the Fe enrichments.

Why didn't large-sized diatoms make a large bloom during SEEDS-II?

Possibilities

- Zooplankton (especially, mesozooplankton) grazing might suppress diatom stocks?
- Seed populations of bloom-forming diatoms might not exist before the Fe additions?
 - No, *Thalassiosira* spp. (ca. 20 µm in size) predominated in the diatom population.
- Sufficient amount of bioavailable Fe might not be supplied to the large-sized diatoms?

- For Fe-deficient algal cells, the Fe-containing protein "ferredoxin" can be replaced by the non-Fe-containing "flavodoxin" at the acceptor side of their photosystem I (La Roche *et al.*, 1996).
- Ferredoxin and flavodoxin were analyzed by SDS-PAGE plus western blotting using their diatom-specific antibodies, respectively.
 - anti-ferredoxin (Suzuki *et al.*, in prep.)
 - anti-flavodoxin (La Roche *et al.*,1995)

An example of flavodoxin assay for micro-sized diatoms (20-200 µm in size) at 5 m during SEEDS-II

PC: positive control [Fe-limited diatom *T. pseudonana* (CCMP1335)]

MW: Molecular weight marker

Changes over time in the relative abundance of flavodoxin in micro-sized diatoms (20-200 µm in size) at 5 m during SEEDS-II

The growth of micro-sized diatoms could be suppressed by Fe availability even after the Fe additions.

Conclusions

- Fe supply had a crucial effect to improve the photosynthetic physiology of phytoplankton at the study site during summer.
- In SEEDS-II, a diatom bloom did not occur. That could be partly due to the Fe limitation of large-sized diatoms throughout the experiment.