The dynamics of dissolved organic matter during in situ iron enrichment experiments in the subarctic North Pacific

PICES 15th Annual Meeting
Oct. 17, 2006
Yokohama

Takeshi Yoshimura (CRIEPI)
Hiroshi Ogawa (U Tokyo)
Keiri Imai (U Tokyo)
Jun Nishioka (Hokkaido U)
Table of Contents

1. Background
 The role of DOC in marine C cycle

2. Experimental
 Sampling & analysis

3. Results
 SEEDS in 2001
 SERIES in 2002
 SEEDS-II in 2004

4. Summary
Background

DOC has an important role in C cycle

DOC production
- Algal extracellular release
- Protozoan grazing
- Sloppy feeding
- Viral lysis

DOC removal
- Heterotrophic bacteria
- UV

DOC production:
- Phytoplankton
- Zooplankton
- Bacteria
- DOC release

DOC removal:
- Mixing
- Diffusing
- Sinking
Objective

An iron enrichment experiment
→ Case study of a natural phytoplankton bloom

The present study was conducted to discuss
Production or decomposition of DOC from
changes in the DOC inventory
during the development or decline of
iron-induced phytoplankton blooms
Study sites

Three in situ iron enrichment experiments

- **SERIES**
 - 9 July – 4 August 2002 (26 days)

- **SEEDS**
 - 18 July – 31 July 2001 (13 days)

- **SEEDS-II**
 - 20 July – 15 August 2004 (26 days)
Experimental method

Sampling
The day of 1st iron enrichment: Day 0
- SEEDS: Day 0 - Day 13
- SERIES: Day 15 - Day 26
- SEEDS-II: Day 0 - Day 26

IN (centre of the iron patch)
OUT (surrounding waters)

Niskin or Niskin-X bottles
In-lined GF/F filtration

DOC Analysis
High temperature combustion (Shimadzu TOC-5000)
+-0.1–1.4 µmol L⁻¹ (SD)
Results: SEEDS 2001

DOC increased with the bloom development

0 - 20 m

Chl a (mg m$^{-2}$)

DOC (mmol m$^{-2}$)

5 m

Chl a (µg L$^{-1}$)

Days

Days
Positive correlation between DOC and Chl a

In the growth phase (Day 4 - 9) DOC / Chl a (mol / g) = 0.68
Gross DOC production
253 mmol m\(^{-2}\)

POC production (\(^{13}\)C)
314 mmol m\(^{-2}\) (Kudo et al. 2005)

45% of algal fixed carbon was converted into DOC
While Chl a decreased rapidly, DOC fluctuated in our observation period.
SERIES: DOC production

At the peak of the bloom

Net Chl a accumulation
175 mg m\(^{-2}\)

Net DOC accumulation
106 (74 – 142) mmol m\(^{-2}\)

DOC / Chl a (mol / g)
= 0.61 (0.42 – 0.81)
Results: SEEDS-II 2004

DOC fluctuated in the mixed layer throughout the observed period.

0-30 m

- **Chl a (mg m$^{-2}$)**
 - IN
 - OUT

- **DOC (mmol m$^{-2}$)**
 - IN
 - OUT

IN, 5 m

- **Chl a (µg L$^{-1}$)**
 - Days

Growth phase

- Days 0-12: IN increased, OUT decreased

Decline phase

- Days 12-26: IN decreased, OUT increased

DOC fluctuated in the mixed layer throughout the observed period.
Mean value in 0 - 30 m
A: 1835 ± 24
B: 1843 ± 28
The difference is NOT significant

Mean value in 30 - 75 m
A: 2462 ± 56
B: 2564 ± 78
The difference is significant

DOC increased below the surface mixed layer after the peak of the bloom
Summary

A significant portion of the organic carbon production was observed as DOC

<table>
<thead>
<tr>
<th></th>
<th>Growth phase</th>
<th>Decline phase</th>
<th>Dominant phytoplankton</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEEDS</td>
<td>DOC/Chl a = 0.68</td>
<td>No data</td>
<td>Large centric diatom</td>
</tr>
<tr>
<td></td>
<td>45% of fixed C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERIES</td>
<td>DOC/Chl a = 0.61</td>
<td>Fluctuated in the ML</td>
<td>Large pennate diatoms</td>
</tr>
<tr>
<td>SEEDS-II</td>
<td>Not detected</td>
<td>Increased below the ML</td>
<td>Small phytoplankton</td>
</tr>
</tbody>
</table>

We need to discuss the DOC dynamics with
Bacterial production or abundance
Sinking POC flux