Towards coupling sardine and anchovy to the NEMURO lower trophic level model

Kenneth A. Rose
Dept. of Oceanography and Coastal Sciences
Louisiana State University

Vera N. Agostini
Pew Institute for Ocean Science
University of Miami

Participants in the Tokyo Workshop
Introduction

• Sardine – anchovy population cycles
 – well-studied
 – teleconnections across basins

• Recently, increased focus on the spatial aspect of the population cycles
 – contraction/expansion
 – shifts

• Top-down versus bottom-up controls
Workshop

• “Global comparison of sardine, anchovy and other small pelagics: building towards a multi-species model”

• November 14-17 2005 in Tokyo, Japan

• Support: Japanese Fisheries Research Agency (FRA), Tohoku National Fisheries Research Institute, PICES, GLOBEC, Asia Pacific Network (APN), Inter American Institute for Global Change research (IAI)
Sardine

Anchovy

1971

2004

Provided by: Carl van der Lingen
Sources: King, 1997; E. Stenevik, pers com
California Current

Source: MacCall, 1990
California Current
Sardine egg distribution

Source: Agostini, unpublished
Model 1: NEMURO
Model 2: NEMURO.FISH

\[
\frac{dW}{dt} = \left[C - (R + S + F + E) - H \right] \cdot \frac{CAL_z}{CAL_f} \cdot W
\]

\[
C_j = \frac{C_{\text{MAX}} \cdot \frac{PD_j \cdot v_{ij}}{K_{ij}}}{1 + \sum_{k=1}^{n} \frac{PD_k \cdot v_{ik}}{K_{ik}}}
\]

- W = weight (g ww)
- C = consumption (1/day)
- R = respiration
- S = SDA
- F = egestion
- E = excretion
- H = reproduction

Depend on W and temperature

- PD = prey density (1=ZS; 2=ZL; 3=ZP)
- V = vulnerability
- K = feeding efficiency

Zoop from NEMURO
Now: NEMURO.SAN

• Biological extensions:
 – Two species (sardine and anchovy)
 – Individual-based
 – Full life-cycle
 – Dynamic predator on sardine and anchovy

• Spatial extensions
 – Grid of cells
Loop over cells: rows i and columns j
Loop over days
New recruits
Determine fish in each cell
Loop over cells: rows i and columns j
Loop over DTs: RK4
NEMURO – NPZ
Growth ← Zooplankton
Mortality: M/2 + predator*M/2 + F
Movement {predator}: new x,y,cell
Age and clean old individuals
Next

Initial conditions
Set-up Environment
Spawner-Recruit
Loop over years
NEMURO.SAN
NEMURO.SAN: Growth

\[
\frac{dW}{dt} = \left[C - (R + S + F + E) - H \right] \cdot \frac{CAL_z}{CAL_f} \cdot W
\]

- **W** = weight (g ww)
- **C** = consumption (1/day)
- **R** = respiration
- **S** = SDA
- **F** = egestion
- **E** = excretion
- **H** = reproduction

Depend on **W** and temperature

- **PD** = prey density (1=ZS; 2=ZL; 3=ZP)
- **V** = vulnerability
- **K** = feeding efficiency

Zoop from NEMURO

\[
C_j = \frac{C_{MAX} \cdot PD_j \cdot v_{ij}}{1 + \sum_{k=1}^{n} \frac{PD_k \cdot v_{ik}}{K_{ik}}}
\]

Mortality to NEMURO
Maximum Consumption
Bioenergetics

<table>
<thead>
<tr>
<th>Process</th>
<th>Anchovy</th>
<th>Sardine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cmax</td>
<td>$1.65W^{0.67} * T1$</td>
<td>$0.2W^{0.256} * T2$</td>
</tr>
<tr>
<td>Respiration</td>
<td>$0.086W^{0.81} * Q10 * ACT$</td>
<td>$0.0033W^{0.23} * Q10 * ACT$</td>
</tr>
<tr>
<td>Egestion</td>
<td>$0.2 * C$</td>
<td>$0.16 * C$</td>
</tr>
<tr>
<td>Excretion</td>
<td>0</td>
<td>$0.1 * (C-Eg)$</td>
</tr>
<tr>
<td>SDA</td>
<td>0</td>
<td>$0.175 * (C-Eg)$</td>
</tr>
</tbody>
</table>
Bioenergetics- Feeding

<table>
<thead>
<tr>
<th>K values</th>
<th>Age 1-2</th>
<th>Age 3-5</th>
<th>Age 6+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anchovy</td>
<td>0.09</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>Sardine</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Small Zoop</td>
<td>0.09</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>Large Zoop</td>
<td>0.6</td>
<td>0.08</td>
<td>0.06</td>
</tr>
<tr>
<td>Predatory Zoop</td>
<td>0.3</td>
<td>0.2</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>
NEMURO.SAN: Mortality

- Fishing
 - Age-specific

- Egg to age-1
 - Implicit in spawner-recruit relationship

- Natural:
 - Constant
 - Predator-dependent
Predator-dependent

• Individuals of a third species
 – Do not grow or die
 – Move based on neighboring cell with highest prey biomass (anchovy + sardine)

• Each day compute predator biomass in each cell

• Daily mortality rate of anchovy and sardine individuals in a cell is proportional to predator biomass in that cell
NEMURO.SAN: Reproduction

• Option 1: Follow eggs through yolk-sac, larval, and juvenile stages
 – Better for investigating YOY effects
 – Must specify density-dependence

• Option 2: Spawner-recruit relationship
 – Aggregate YOY stages
 – Easier to code
Reproduction

• Spawning season:
 – Anchovy: January 1 – May 30
 – Sardine: January 1 – Sept 7

• Compute SSB at beginning of spawning season

• Individuals mature at age-2 (after seeing second January 1 birthday)
Spawner-Recruit

Anchovy

- Spawning Stock Biomass (10^6 metric tonnes)
- Recruits to Age-1 (millions)

Sardine

- Spawning Stock Biomass (10^6 metric tonnes)

Amendment 8, PacificFishery Management Council, 1988

Jacobson and MacCall, 1995
Recruitment

• Add new individuals one year after each day of spawning season

• Initial values:
 – 10.5 g for anchovy and 35.7 g for sardine
 – Anchovy placed near coast at mid-latitude
 – Sardine placed at southern edge
NEMURO.SAN: Movement

• Each individual has a continuous x and y position

• Position mapped to grid to determine cell location

• Three candidate approaches:
 – Neural network with genetic algorithm (Huse and Giske 1998)
 – Kineses (Humston et al 2004)
 – Fitness (Railsback et al 1999) - Today
Fitness-based Movement

• Evaluate cells in neighborhood

• For each cell, project weight and survival to next spawning season

• Fitness$_{ij}$ = Survival * ($W_{projected}/W_{target}$)
Fitness-based Movement

• Select cell with highest fitness

• Increment x and y by travel distance in direction of selected cell (8 directions)
 – Anchovy 2000 m, sardine 5000 m, predator 500 m

• Plus an equal random component
Numerical Details

• 4th order Runge-Kutta for each timestep in a day

• Movement is daily and predator sees yesterday’s locations of anchovy and sardines

• 1000 super individuals per age class per species, and removed when reach age-10 (Scheffer et al. 1995)
California Current Version

- Very preliminary – meant to answer the question: “Can we do it?”

- 40 cells in x-direction x 20 in y-direction

- West coast Vancouver Island version of NEMURO (Rose et al. in press) in top right corner
California Current

- Cape Blanco
- Cape Mendocino
- Point Conception

40 cells

20 cells
WCVI Environmental Variables

- **Light (ly/min)**: 0.0, 0.1, 0.2, 0.3
- **Mixed Layer Depth (m)**: 30, 45, 60, 75
- **Temperature (°C)**: 8, 10, 12, 14
- **Day of Year**: 0, 60, 120, 180, 240, 300, 360
- **Nutrient Exchange**: 0, 5, 10, 15

Diagrams showing the variations of these variables over time.
Temperature

July 29

Water Temperature

North South
Mixed Layer Depth

July 29
Nutrient Exchange

July 29
Baseline Simulation

- **Conditions:** Years 1-10: spin-up
 - 11-20: warm (+2°C)
 - 21-30: cold (-2°C)
 - 31-40: warm (+2°C)
 - 41-50: cold (-2°C)

- **Outputs:**
 - Annual SSB and mean weight at age-4
 - NEMURO zooplankton concentrations at 3 cells in year 20
 - Daily bioenergetics of two individuals over their lifetime
 - Spatial maps of fish biomass on July 20 for six of the years
Spawning Stock Biomass (10^5 MT)

Anchovy
Sardine

Year
Mean Weight at Age-4 (g)

Spawning Stock Biomass (10^5 MT)

Anchovy
Sardine

Year
Year 20

- Small Zooplankton
- Large Zooplankton
- Predatory Zooplankton
Sardine #10060 (Bernie)

- Zooplankton
- Maximum
- Consumption
- Respiration
- Egestion, excretion, SDA
- Change in weight with temperature
- Weight over time

Age (days since recruitment)
Concluding Remarks

• Presented an idea for the next generation in NEMURO family of models – credit goes to the Tokyo workshop participants

• Demonstrated it is feasible and some of its features and capabilities
 – Two species and individual-based
 – Full life cycle
 – Spatially-explicit
Next

- Option 1:
 (a) Stop, call it theoretical (include predator-prey?)

- Option 2:
 (a) Continue and develop a more rigorous California Current version (biology and physics)
 (b) Then apply to other locations (Benguela, Japan) for geographical comparison