Growth of larval and early juvenile sardine (Sardinops spp.) and anchovy (Engraulis spp.) in the eastern and western North Pacific Ocean

Motomitsu Takahashi, David M. Checkley Jr., Akihiko Yatsu and Yoshiro Watanabe

Scripps Institution of Oceanography, UCSD
(takahamt@coast.ucsd.edu)
Change in fishery catch for *Sardinops* and *Engraulis* and sea surface temperature in the 20th century

Kuroshio/Oyashio region
- *S. melanostictus*
- *E. japonicus*

California Current region
- *S. sagax*
- *E. mordax*

Change in fishery catch for *Sardinops* and *Engraulis* and sea surface temperature in the 20th century
Studies on growth rate-dependent recruitment for *Sardinops* and *Engraulis*

Growth rates after metamorphosis were positive function of recruitment abundance in *S. melanostictus*.

(Takahashi et al. in preparation)

Late larvae with faster growth rates had greater probability of successful recruitment to the adult population than those with slower growth rates in *E. japonicus*.

(Takahashi and Watanabe 2004)

Growth rates during larval stage are critical determinant of population growth in *S. sagax* and *E. mordax*.

(Lo et al. 1995)

We hypothesize that differential growth due to different environmental conditions causes the out-of-phase population dynamics between the eastern and western N Pacific Ocean.
Objectives

Effects of temperature and food on growth rates during late larval and early juvenile stages of sardine (*Sardinops*) and anchovy (*Engraulis*) in the eastern and western North Pacific Ocean

- Somatic and otolith growth
- Growth standardization
- Growth variations in relation to SST and prey density
- Conclusions
Occurrence of sardine and anchovy in Kuroshio-Oyashio transitional waters

S. melanostictus E. japonicus

1996-2003, May-Jun., FRA cruise, Trawl
Occurrence of sardine and anchovy in the California Current region

S. sagax

2005 Aug.-Sep. BPA, Trawl

2004 Apr. CalCOFI, Bongo

2004 Nov. Beach seine

E. mordax

2005 Aug.-Sep. BPA, Trawl

2006 May-Jun. Rockfish, Trawl

2005 Oct. PaCOOS, Trawl
Frequency distribution of SL

- **S. melanostictus**
 - Frequency: %
 - Sample size: N=871

- **E. japonicus**
 - Frequency: %
 - Sample size: N=3057

<table>
<thead>
<tr>
<th>Standard length; SL (mm)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (%)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

![Histogram showing frequency distribution of SL for S. melanostictus and E. japonicus](image)
Frequency distribution of SL

- **S. melanostictus** (N=871)
- **S. sagax** (N=232)
- **E. japonicus** (N=3057)
- **E. mordax** (N=216)

Standard length; SL (mm)

Frequency (%)
Otolith of juvenile *S. sagax* (65.8 mm SL, 150 days after hatching)

Measuring

Number of increments (N)

Width of increments (IW)

Otolith radius (OR)

Age in days

N + 2 (*S. melanostictus*)

N + 3 (*E. japonicus*)

N + 3 (*S. sagax*)

N + 4 (*E. mordax*)

Otolith measurement system

(Ratoc System Engineering Co., Ltd.)

Yokohama
La Jolla
Frequency distribution of hatch dates

- S. melanostictus (N=883)
- E. japonicus (N=2909)
Frequency distribution of hatch dates

- **S. melanostictus (N=883)**
- **E. japonicus (N=2909)**
- **S. sagax (N=232)**
- **E. mordax (N=216)**

Graph showing the distribution of hatch dates for different species and locations.
SL at age

- **S. melanostictus**
- **S. sagax**
- **E. japonicus**
- **E. mordax**
Increment width (IW) at age of 60-80 mm SL fish

E. japonicus

S. melanostictus

S. sagax

E. mordax
Otolith radius (OR) and SL

- **S. melanostictus**
- **E. japonicus**
- **S. sagax**
- **E. mordax**

Metamorphosis
- Larva
- Juvenile

Watanabe and Kuroki (1997)

Linear

Non linear
How to backcalculate growth

Biological Intercept Method (Campana 1990)

\[SRGR = \frac{\ln(BL_{last}) - \ln(BL_{last-5})}{5} \]

\(BL_{last} \): Backcalculated SL at deposition of the last increment

\(BL_{last-5} \): Backcalculated SL at 5 days before the last deposition

Standardized recent growth rate (SRGR, d\(^{-1}\))

(Jones 2002)
SRGR and SST for *Sardinops*

Late larva

- **SRGR (d⁻¹)**
- **SST (°C)**

Early juvenile

- **S. melanostictus**
- **S. sagax**
 - California
 - Oregon/Washington

Graph showing SRGR and SST for *Sardinops* species.
SRGR and available prey density for *Engraulis*

Available copepod size
- Anchovy larva
- Prosome width: 200-600 μm
 (Uotani 1985)

Zooplankton collection
- KOTW
 - Mesh: 335 μm
 - Depth: 150 m
- OR/WA
 - Mesh: 200, 335 μm
 - Depth: 100 m

Late larva
- SRGR (d⁻¹)
- Available prey density (mg DW m⁻³)

Early juvenile
- SRGR (d⁻¹)
- Available prey density (mg DW m⁻³)

- *E. japonicus* (green circles)
- *E. mordax* (black circles)

Mean ± SD
Increment width (IW) at age of 60-80 mm SL fish

- **E. japonicus**
- **S. melanostictus**
- **S. sagax**
- **E. mordax**
Conclusions

- Somatic and otolith growth rates of *Sardinops* and *Engraulis* were faster in the KOTW than in the CCT
- We were unable to separate temperature and food effects on *Sardinops* growth rates
- SRGR of *E. japonicus* was faster than *E. mordax* in the SST range for 13-21°C
- Slower SRGR of *E. mordax* off Oregon/Washington was caused by lower concentration of available copepod
Acknowledgement

Hiroshi Nishida
Nobuhito Nango
Richard Brodeur
William Peterson
Robert Emmett
Anthony Phillips
Keith Sakuma
Ryan Rykaczewski
William Watson
Russ Vetter