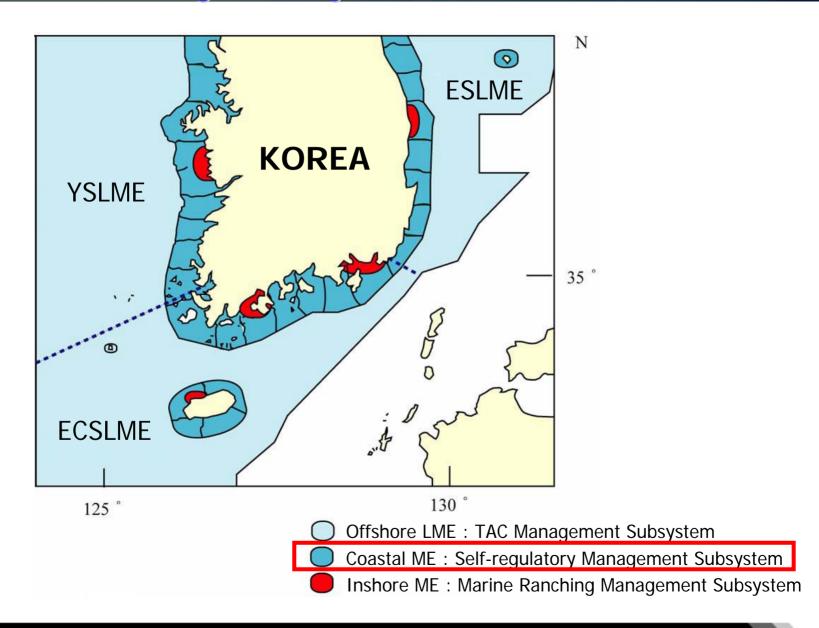

A study on the ecosystem-based resource management system of self-regulatory community fisheries

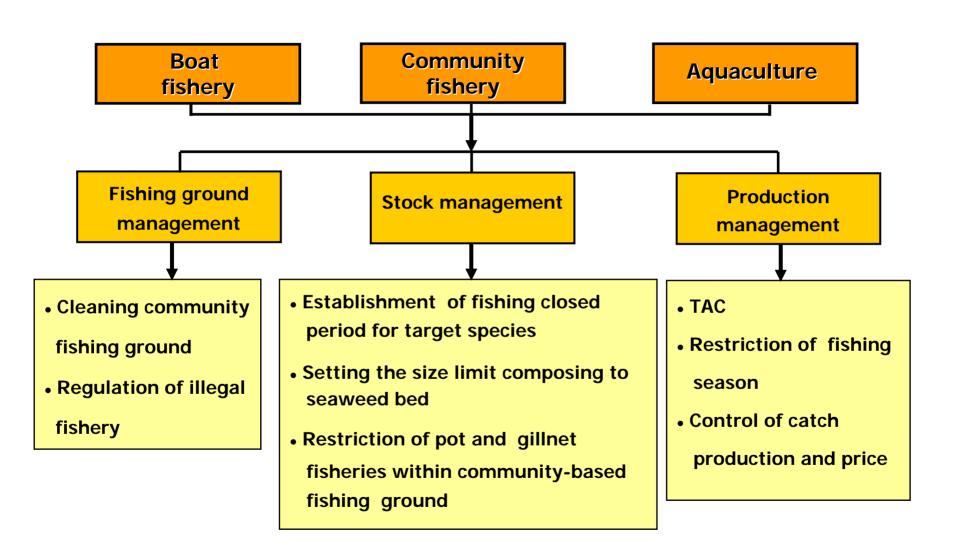
Hee Won Park, Chang Ik Zhang

Pukyong National University



Contents

Introduction


Ecosystem-based integrated fisheries management system of Korea

What is Self-regulatory Fisheries Management?

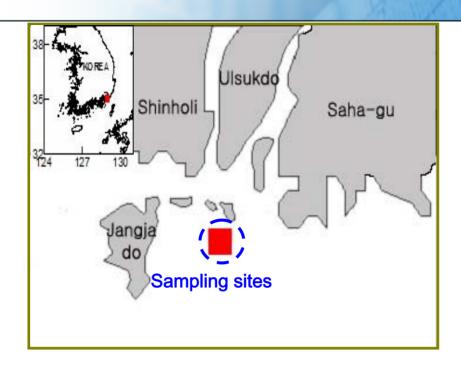
- Definition
 - For coastal marine ecosystem
 - : Fishermen conserve, manage and use fisheries resources themselves (442 communities participating in 2006)
- Management authority : self-regulating community
- Fisheries: boat fishery, community fishery, aquaculture, etc.

Current system of Self-regulatory Fisheries Management of Korea

Purpose of this study

Current system

Suggestion of EBM plan


Scientific stock assessment

Improved system

Material & Method

Ш

Target Ecosystem

- Target ecosystem
 - : Dong-Li self regulatory community located at Busan, Korea
- Sampling periods
 - : Nov. 2004 Aug. 2005 (seasonally 4 times)

Main fishing species

- Main fishing species : Mactra chinensis (Hen clam)
 - Order Veneroida, Family Mactridae
 - Distribution : Korea, Japan, Taiwan
 - Habitat: Sandy or Muddy bottom below 10m in depth

Population Ecological studies

Population

ecological

studies

Age and Growth

Age character

: Shell

Growth parameters

: von Bertalanffy growth equation

Mortality

- Survival rate (S) & Instantaneous total mortality (Z)
 - Chapman & Robson (1960)
- Instantaneous coefficient of natural mortality (M)
 - Zhang and Megrey (2006)
- Instantaneous coefficient of fishing mortality (F)
 - Z-M

Coefficient of

Age at first Capture (t_c)

$$t_c = \frac{t_a \times P_a + t_b \times P_b}{P_a + P_b}$$

where,

t_a: age of the youngest groupt_b: age of a dominant group

P_a: proportion of the youngest age group

 P_b : proportion of a dominant age group

Biomass

$$B = \frac{\overline{D} \times \overline{W} \times A}{q}$$

where,

D: mean density (inds./m²)

W: mean weight (g)

A : area

q: catchability

Biological Reference Points & ABC

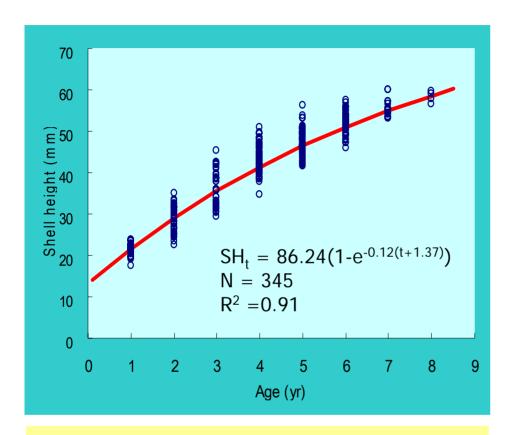
- Biological reference points (BRPs)
- F_{opt}: Using Beverton and Holt (1957) model

F_{0.1}: Yield per recruit model

F_{40%}: Spawning biomass per recruit model

ABC (Acceptable biological catch)

$$ABC = F_{opt}B \frac{1}{M + F_{opt}} (1 - \exp^{-(M + F_{opt})})$$


Where, B: Biomass (mt)

F_{opt}: Optimum fishing mortality

M : Natural mortality

/III Results

Estimates of growth parameters of Mactra Chinesis, Hen claim

The von Bertalanffy growth curve by the nonlinear regression method of *Mactra Chinensis* in the Dong-li self-regulatory community of Busan, Korea

Growth parameter

$L_{\!\scriptscriptstyle{\infty}}$	86.24 mm
K	0.12 /yr
t _o	-1.37 yrs

Estimates of Survival rate (S) & Instantaneous coefficient of Mortalities (Z,M &F) of *Mactra Chinesis*, Hen clam

Survival rate & Instantaneous coefficient of total mortality				
	S	Var(s)	Z	
Heinke	0.641	0.001	0.445	
Catch curve	0.514	NA	0.666	
Jackson	0.652	NA	0.428	
Chapman & Robson	0.515	0.0005	0.664	

Methods	Instantaneous coefficient of natural mortality	Instantaneous coefficient of fishing mortality
Alverson & Carney	0.365	0.299
Zhang & Megrey	0.232	0.432

Age at first capture (t_c)

Age composition of *Mactra chinensis* in the Dong-li self-regulatory community of Busan, Korea

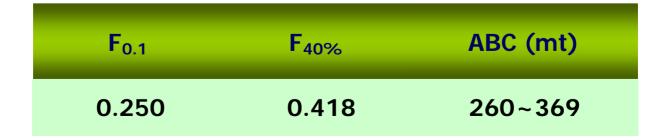
Age(year)	1	2	3	4	5	6	7	8	Total
Number	27	54	33	83	76	52	16	4	345
Percent (%)	7.8	15.7	9.6	24.1	22.0	15.1	4.6	1.2	100.0

$$t_c = \frac{t_a \times P_a + t_b \times P_b}{P_a + P_b} = 3.26 / yr$$

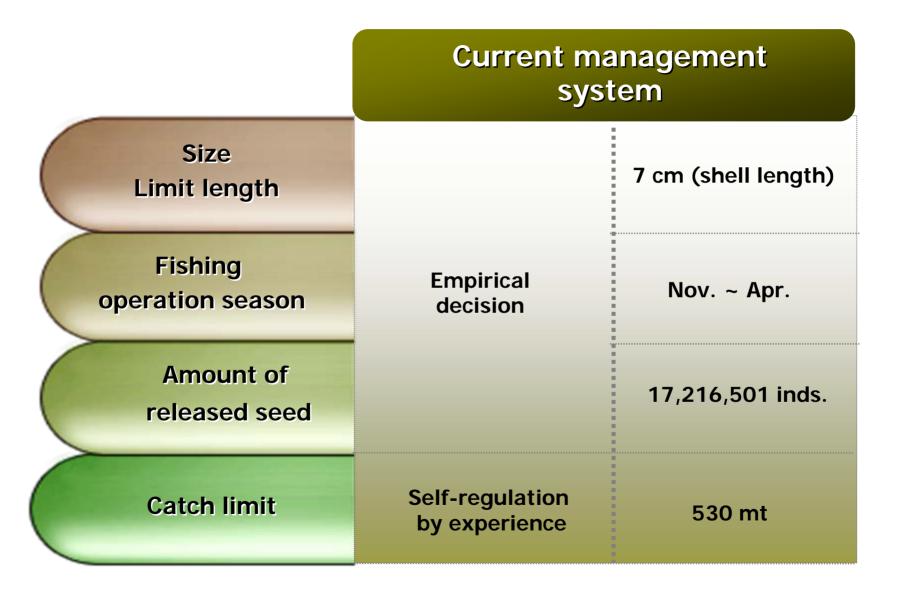
Biomass

Biomass

Number of operation	Density (inds./m²)	Mean weight (g)	Total area (km²)	Catchablity (q)
1	15.85	51.10	0.52	0.52
2	13.82	48.83	0.52	0.52
3	13.51	49.97	0.52	0.52
Mean	14.39	49.97	0.52	0.52


Biomass (mt)	Var (B) by Delta method	95% confidence interval (mt)
713	1.14×10 ¹⁵	645.19~780.43

Biological Reference Points & ABC


BRP

Age at first	E	E	E	Y/R	R(g)	SB/	R(g)
capture	F _c	F _{0.1}	F _{40%}	F _c	F _{0.1}	F _c	F _{40%}
3.26	0.432	0.250	0.418	10.71	19.55	24.86	25.45

ABC

Current self-regulatory community fisheries management system in Dong-li community of Busan, Korea

Summary

Improved self-regulatory community fisheries management system in Dong-li self-regulatory community of Busan, Korea

Objectives	Reference points	Management scheme in Dong-li
1. Maintaining sustainable fisheries production	Catch limit (ABC)	369 mt
2. Maintaining spawning biomass	Limit size Season enclosed	6.25cm (SL) Apr Nov.
3. Maintaining optimum fishing intensity	F _{0.1} , F _{x%}	0.250/yr (F _{0.1}) 0.418/yr (F _{40%})
4. Increasing/maintaining stock biomass	B _{MSY} , B _{x%}	491 mt (B _{MSY}) 409 mt (B _{40%})
5. Maintaining optimal habitat environment	Annual yield for pirate species	500 kg
6. Optimum stock enhancement	Amount of released seed (considering carrying capacity)	14,333,096 inds.

V Further study

Further study

■ Three Ecosystem-based fisheries management plans to be established

Conservation of spawning ground and habitat	Areas of disturbed spawning ground and habitat	% of each spawning ground and habitat that is undisturbed
Maintaining biodiversity	% of prey species in diet	Minimum % in diet
Maintaining socio/economic benefit	Maximum economic yield (MEY)	f _{MEY}