AquaModel:Mariculture model development and testing

J. E. Jack Rensel, Rensel Associates Aquatic Sciences

Dale A. Kiefer, University of Southern California

Frank J. O'Brien, System Science Applications

Overview of Talk

- GIS known as EASy: Environmental Assessment System
- Examples of GIS use
- AquaModel within a Geographic Information System (GIS)
- General architecture of AquaModel & its origins
- Output features and application in two different ecoregions
- Short clips of model running real time

- Three dimensional system for marine applications
- Compatible with ESRI (arc-info) GIS
- Interfaces for models, spreadsheets, databases, and Internet

EASy Graphical Environment

Contour, plot

False colour plot

Simulation control panel

Bubble Plots

Species richness relative to bathymetry, water density differentials & bottom temperature

Fime Series plots

Depth profile plots

Tsontos, V. M. and D. A. Kiefer. 2000. Oceanography 13(3): 25-30.

Physicochemical Characterization: Strait of Juan de Fuca 30 - 50 m Zone Possible mariculture site with strong currents & HNLC conditions

Longitudinal and cross channel transects

- Significantly lower temperature,
- Therefore dissolved oxygen lower too
- Implications for farm siting

Rensel et al. submitted

Primary AquaModel simulation variables

Near field use:

- carbon flux → Benthic footprint of organic carbon deposition resuspension, transport and respiration
- 2) Oxygen flux → Fish Respiration limits pen loading TOC drives sediment oxygen demand

Meso-field use:

- 1) Nitrogen flux → Pelagic footprint
 Simulates excretion of NH4, Phytoplankton growth
- & Zooplankton grazing

Other simulated outputs including profiles & transects:

- Instantaneous fish growth rate
- Fish biomass
- Optimal feed requirement
- Fecal carbon distribution
- Waste feed carbon distribution
- Sediment anaerobic and aerobic profiles
- Sediment deposition by component: fecal, feed, combined
- Near bottom suspended layer DO: fecal, feed, combined

All outputs from vertical profiles recorded to spreadsheet file if desired from several locations

20+ pens or farms modeled simultaneously

Hydrodynamic Module

Sea Bottom

Fish Physiology Module

- Carbon Oxygen Nitrogen based
- Growth and metabolism simulation (parameterized the literature data of Brett, Fry and others)
- Varies with activity level, temperature, ration, etc.
- Spp. specific respiration, N excretion & settling rates
- Validation salmon physiology lab data, field data

Benthic Module

Benthos

Benthic - Pelagic Model Linkages

Nutrients – Algae - Zooplankton

Model Construction: Teamwork

- Develop a conceptual model
- Collect or obtain quality process data & linkages
- Conceive, write and link equations (Mathmatica)
- Write code (visual basic)
- Debug code
- Enter data, images, polling sources
- Run and compare to validation data
- Revise equations and code, run again & again
- Sensitivity analysis (vary range of less known f)
- Validate, validate, validate.....

Accessible User Controls

Cobia Cages Offshore of Puerto Rico

Rachycentron canadum

Tabular Output Results Example:

Under cages or other selectable locations & depths

Within or Under Cage	Flow Velocity	Growth Rate	Fish Biomass	Dissolved Oxygen	Nitrogen	Phytoplankton	Zooplankton	Fecal Carbon	Feed Carbon	Sediment Carbon
Units→	cm s ⁻¹	1/d	MT	mg L ⁻¹	μM	μg L ⁻¹	μg L ⁻¹	g m ⁻³	g m ⁻³	g m ⁻²
Mean	8.4	0.01	483.9	5.47	1.06	0.06	0.09	0.02	0.06	0.75
SD	5.2	0.00	421.7	0.18	0.71	0.03	0.02	0.04	0.03	1.51
Change	na	na	na	-0.23	+0.91	-0.04	+0.04	+0.02	+0.06	+0.75
90th %	15.9	0.01	543.4	5.63	1.96	0.10	0.13	0.03	0.10	2.82
10th %	2.9	0.01	426.5	5.24	0.42	0.03	0.06	0.01	0.03	0.00

So what is new? (Why not use existing models?)

- The only combined water column benthic simulation model for aquaculture
- 2) Fish physiology submodel that will accept constants and functions from different fish species
- 3) Only real time visualization model with useful GUI
- First windows-based package that couples to a parent GIS system (EASy)
- 5) Relatively easy for coastal managers to use
- 6) "Raises the bar" for those seeking permits to compare sites, improve and defend their choices

Potential Users of AquaModel

- Government regulators or coastal managers to assess impacts and effects
 - Is a proposed operational sustainable in terms of achieving limited impact in a steady state basis?
- Mariculturists to evaluate potential sites and plan operations
 - Will a candidate site be economically viable as well as environmentally acceptable?
- Researchers to provide a home for their data and means to test and visualize their submodels using the modeling within GIS features
 - Cooperative efforts underway

Future Directions

Extensive additional validation: Puget Sound and S. latitudes

New culture species models, physiological characterization

Shellfish rafting effects module

Integrated Aquaculture (IMTA)

Far field hydrodynamic submodel allowing lagrangian flow field

Long term time series using several hour time steps

Looking for additional collaborations with agencies & researchers around the world

More Information: Google "AquaModel"

or http://netviewer.usc.edu/aquamodel/index.html

Model Run Demo

Funding

NOAA Office of Oceanic & Atmospheric Research

NOAA SBIR Program

USDA SBIR Program

Collaborators

Dr. Dale Kiefer, University of Southern California, Los Angeles

Dr. Frank O'Brien, Systems Science Applications

Dr. Katsyuki Abo, National Research Institute of Aquaculture, Japan

Dr. Vardis Tsontos and Tim Lam, SSA, Los Angeles

Hubbs Seaworld Research Institute, San Diego

Troutlodge Inc. Western Washington

AGS Fish Farms, Inc. Puget Sound

Ocean Spar Technologies Puget Sound

