Influence of Initial Plankton Conditions and Mixed Layer Depth on the Outcome of Iron-fertilization Experiments

Masahiko Fujii1,2 and Fei Chai1
(1)University of Maine, USA
(2)Now at Hokkaido University, Japan

1. Introduction
2. Model experimental design
3. Sensitivity to mixed layer depth
4. Sensitivity to initial plankton biomass
Introduction

Iron-fertilization induced maximum chlorophyll and maximum TCO$_2$ removal

(De Baar et al., 2005)
Motivation

Mixed layer depth plays a great role in iron-induced biological responses.

How about other factors?
- initial abundance of diatoms and its grazers (mesozooplankton)

Compare biological responses to different mixed layer depth and initial plankton abundance by an ecosystem model
15-compartment ecosystem model
(Fujii et al., 2002; Yamanaka et al., 2004)

- Diatoms
- Mesozooplankton
- Nutrients
Model Experimental Design

The model is applied to SEEDS I (48.5°N, 165°E).

Increase of three photosynthetic parameters of diatoms (max. growth rate, P-I curve and Chl:C ratio)

(Chai et al., 2002; Fujii et al., 2005, 2006; Yoshie et al., 2005)
Model Sensitivity Study

<table>
<thead>
<tr>
<th>Mixed layer depth change (1st set of experiments)</th>
<th>Initial diatom biomass (2nd set of experiments)</th>
<th>Initial mesozoo. biomass (3rd set of experiments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5m, 9.3°C</td>
<td>0.001</td>
<td>0.01</td>
</tr>
<tr>
<td>12.5m, 8.6°C (standard)</td>
<td>0.01</td>
<td>0.1</td>
</tr>
<tr>
<td>17.5m, 7.8°C</td>
<td>0.1</td>
<td>1 (standard)</td>
</tr>
<tr>
<td>22.5m, 7.2°C</td>
<td>1 (standard)</td>
<td>5</td>
</tr>
<tr>
<td>27.5m, 6.8°C</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>42.5m, 5.5°C</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>72.5m, 4.3°C</td>
<td>1000</td>
<td>30</td>
</tr>
</tbody>
</table>
Exp.1: Mixed layer depth change

- **Surface chl.**
 - SEEDS I data
 - MLD=12.5m
 - MLD=27.5m
 - MLD=72.5m

- **Surface Si(OH)₄**
- **Primary production**
- **pCO₂sea**

Day of experiment vs. concentration ([mg m⁻³], [mmol m⁻³], [mgC m⁻² day⁻¹], [µatm])
Exp. 1: Mixed layer depth change

- **Maximum surface chl.**
 - [mg m\(^{-3}\)]
 - Model
 - de Baar et al. (2005)

- **Maximum TCO\(_2\) drawdown**
 - [mmol m\(^{-3}\)]

- **Maximum primary production**
 - [mgC m\(^{-2}\) day\(^{-1}\)]

- **Maximum export production**
 - [mgC m\(^{-2}\) day\(^{-1}\)]

Due to higher temp.
Diatom growth

\[V_{\text{max}} L \times \exp(k_L \times \text{Temp}) \]

Temperature dependence (Q_{10} effect)

\[\times \min \left\{ \frac{[\text{NO}_3^-]}{[\text{NO}_3^-]+K_{\text{NO}_3}}, \frac{[\text{NH}_4^+]}{[\text{NH}_4^+] + K_{\text{NH}_4}}, \frac{[\text{Si(OH)_4}]}{[\text{Si(OH)_4}]+K_{\text{Si(OH)_4}}} \right\} \]

Nutrient regulation

\[\times \left\{ 1 - \exp\left(-\frac{\alpha \times \text{Light}}{V_{\text{max}} L} \right) \right\} \times \text{Diatom biomass} \]

Light limitation
Diatom growth: 12.3

Temperature dependence: 1.2

Nutrient regulation: 1.1

Light limitation: 1.1

Diatom biomass: 7.1
Exp. 2: Initial diatom biomass change

- **Surface chl.**
- **Surface Si(OH)_4**
- **Primary production**
- **pCO_{2sea}**
Exp. 2: Initial diatom biomass change
Exp.3: Initial Mesozoo. biomass change

- **Surface chl.**
 - O SEEDS I data
 - Red: ZLx0.01
 - Black: ZLx1
 - Blue: ZLx30

- **Surface Si(OH)₄**

- **Primary production**

- **pCO₂sea**
Exp. 3: Initial Mesozoo. biomass change

(a) Diatom specific growth rate [day\(^{-1}\)]
(b) Specific grazing rate by mesozooplankton [day\(^{-1}\)]

(c) Diatom biomass [mmol m\(^{-3}\)]
(d) Mesozooplankton biomass [mmol m\(^{-3}\)]

(e) Diatom total growth rate [mmol m\(^{-3}\) day\(^{-1}\)]
(f) Total grazing rate by mesozooplankton [mmol m\(^{-3}\) day\(^{-1}\)]
Mixed layer depth change

Max. surface chl.

Max. surface chl.

Max. export prod.

Max. export prod.

Initial plankton change

Initial PL or ZL biomass

Mixed layer depth [m]

Mixed layer depth [m]

Initial PL or ZL biomass

Initial PL or ZL biomass

Diatoms

Mesozoo.

Ģ = 20

Ģ = 1651

Ģ = 1951

Ģ = 1438

Ģ = 15

Ģ = 14
Summary

• Observed inverse relationship between mixed layer depth and iron-induced biological responses is well reproduced in the model at SEEDS I.

• With deeper mixed layer depth, the diatom production is much lower due to the dilution effect, rather than temperature, nutrient and light regulation.

• Initial plankton abundance also plays an important role in determining the outcome of iron enrichments, especially for carbon fluxes.