Interannual variability of winter oceanic CO$_2$ along 137°E in the western North Pacific

Akira Nakadate1, Hitomi Kamiya1, Takashi Midorikawa2, Masao Ishii2 and Toshiya Nakano2

1) Japan Meteorological Agency (JMA)
2) Meteorological Research Institute (MRI / JMA)
JMA’s observation of CO₂

$p\text{CO}_2$
- **Repeat lines**
 - 137°E (P09, 1981~) and 165°E (P13, 1996~)

- **Research vessels**
 - Ryofu Maru and Keifu Maru

- **Frequency**

DIC (dissolved inorganic carbon)
- **Depth:** 0 ~ 2000m
- **Interval:** 137°E (5°), 165°E (various)
- **Frequency:** 137°E (4 times a year), 165°E (Once a year)
- **other parameters:** temperature, salinity, oxygen, nutrients, chlorophyll a etc.
Surface seawater pCO_2 along 137°E in Winter

Previous studies
- Seawater pCO_2 increase was found (Inoue et al. 1995)
- Controlling factors of the interannual variations were discussed (Midorikawa et al., 2006)
 - El Niño Southern Oscillation (ENSO) in the equatorial regions
 - The entrainment process in the northern part of subtropics

< Possible Factors >
- Thermodynamical factors
- Other physical and biogeochemical factors

This study
- To find the dominant spatial structure of the interannual variations in pCO_2
- To consider the controlling factors of the variations
Used Data

3ºN - 30ºN
1984–2007 (24 years)

Locations of Measurement → 1º Grid Data

All Data are Available from
WDCGG (WMO World Data Centre for Greenhouse Gases)
URL: http://gaw.kishou.go.jp/wdcgg/wdcgg.html
Data Processing

Raw $pC\text{O}_2^{\text{sea}}$

Trend and Offset Removing

Normalized $[n-pC\text{O}_2]$

Spatial Structure is found

Extraction of Spatial Structure through EOF Analysis (Empirical Orthogonal Function analysis)

Detrended

Thermodynamical Variations by STT and SSS Normalizing (Weiss et al., 1982)
The 1st EOF mode of n(normalized)-pCO\textsubscript{2} (39%)

Spatial pattern (μatm)

Time scale \sim 5 μatm

Reconstructed
High Correlation with ENSO

El niño
La niña

SOI Southern Oscillation Index
Mode-1

$R = 0.46$
The 2nd EOF mode of $n(\text{normalized})$-pCO_2 (18\%)

Spatial pattern

- 24°N
- μatm
- $\sim 5\mu$atm

Timeseries

- Time scale 2\textendash{}4 years

Reconstructed
High Correlation with Mixed Layer Depth

Mode-2

Mix Layer Depth (m)

Mean north of 24ºN

Mix Layer Temp. (ºC)

Entrainment

DIC increase

pCO_2 increase

R = 0.64

R = -0.78
Discussion on Spatial Structure of Mode-1

- Large Variations along entire 137°E (P09) Line
 - Meteorological Parameters
 - Wind speeds have low correlation
 - Mixed Layer Depth
 - High correlation only north of about 25°N
 - SST NOTE: Related to the Change in Surface DIC
 - High correlation (R = -0.70)

Now no answer!
Summary

• Seawater pCO$_2$ without the variations controlled by thermodynamics of SST and SSS remain the interannual variations in the western North Pacific.

• Using 24 years’ winter oceanic pCO$_2$ along 137°E, detrended and normalized, spatial structure associated with the interannual variations in pCO$_2$ were extracted through EOF analysis.

• The 1$^{\text{st}}$ and 2$^{\text{nd}}$ mode account for 39% and 18% of the contributions to the interannual variations in pCO$_2$, respectively.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Amplitude</th>
<th>Time Scale</th>
<th>High Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1$^{\text{st}}$ mode</td>
<td>~ 5 (\mu\text{atm}) between 3°N and 30°N</td>
<td>~ 5 years</td>
<td>ENSO and ...</td>
</tr>
<tr>
<td>2$^{\text{nd}}$ mode</td>
<td>~ 5 (\mu\text{atm}) north of 24°N</td>
<td>2~4 years</td>
<td>Mixed Layer Depth / Temperature</td>
</tr>
</tbody>
</table>
References

