The amount of bubble injection on the concentrations of N_2 and Ar in the western North Pacific

Shinichi S. Tanaka
Yutaka W. Watanabe

Graduate School of Environmental Earth Science
Hokkaido University, Japan
Outline

- Using N_2 and Ar
- Key word: Preformed sea surface state
- Target: Subsurface water mass
- Amount of bubble injection (B)
 - Index of preformed wind speed
- Saturation state (A)
 - Index of preformed barometric pressure
- Climate change will affect value of B and A
- Preformed O_2 and CFCs by using B and A
Background: Preformed

High Latitudes, Winter

Highlight Dissolved Gases
Highlight Dissolved Gases

Background: Preformed

High Latitudes, Winter

Isopycnal mixing
Gas flux process: Two ways

- **Strong Storm**
 - Gas exchange at surface layer (A)
 - Many bubbles generated
 - Carry to deep part with vertical mixing
 - Forcibly dissolved by pressure

- **Bubble injection (B)**
 - Reflect wind velocity

Equations

- Satu(T, S, and P) = equilibrium
- Flux = k (Satu(T, S, and P) - C)

Explanation

- A is constrained barometric pressure
- B reflects wind velocity
N\textsubscript{2} and Ar

Atmosphere

\[\text{N}_2 : \text{Ar} = 0.7980 : 0.0090 \quad \sim 88.7 \quad \text{Constant} \]

Solubility \[\text{N}_2 : \text{Ar} = 1:2 \]

Saturation conc. (winter)
\[\text{N}_2 : \text{Ar} = 605 : 16.5 \quad \sim 36.7 \]

+ Bubble injection
Shift \(\sim 36.7 \) to \(\sim 88.7 \)

Conservative contents in subsurface
(Denitrification is very little in water column)
High precision analytical method (Tanaka and Watanabe, 2007)

Precision < 0.1 %

Thus, concentration of N_2 and Ar in subsurface depend on preformed surface state!!
Estimates of A and B by N_2 and Ar

$N_2 \text{obs} = A \times N_2 \text{sat} + 0.7809 \times B \quad (1)$

$Ar \text{obs} = E_{Ar} \cdot A \times Ar \text{sat} + 0.0093 \times B \quad (2)$

$N_2 \text{sat}$, $Ar \text{sat}$: Saturation state using by T, S (1 atm., μmol/kg)

E_{Ar} corrected difference between gas exchange rate of N_2 and Ar

Error of B: $\pm \sim 4 \; \mu$mol/kg, $A \pm \sim 0.06$
Sampling area

Northern Western North Pacific

A-line
R/V Hokko-Maru
A4,7,11 and 17

1 station 23 layers
10 ~ 3000m

Sampling

Analytical method

Tanaka and Watanabe, 2007
Results, θ, S, N_2, and Ar conc.
Results: A and B

A

High Pre. 1.00
Low Pre. 0.94

B (μmol/kg)

High W. V. 40
Low W. V. 0
High wind velocity

Low wind velocity

High Pressure and/or long stay

Low Pressure and/or short stay, ice cover etc...

B vs A on $\text{Sigma}\theta$

B (µmol/kg)

1.00

0

1500~2500m

27.75

25.75

A7_2000,2500m

Low Pressure and/or short stay, ice cover etc…
As each water mass had a significantly different value of B and A, it is possible that we can use B and A as an index of the preformed sea surface state and as a water mass indicator.
Saturation state of Preformed Other Gases

\[SpreZ = \left(E_Z \times A \times Z_{\text{satu}} + Z \text{ Air Conc.} \times B \right) / Z_{\text{satu}} \]

\[\text{SpreO}_2 \]
\[96\sim100\% \]
\[\text{AOU} \]
\[\sim14 \text{ \(\mu\)mol/kg} \]
\[\text{Over estimated} \]

It is necessary to re-estimate the oceanic uptake of anthropogenic CO\(_2\) by using \text{PreO}_2
Saturation state of Preformed Other Gases

\[
SpreZ = (E_Z \times A \times Z_{\text{satu}} + Z \text{ Air Conc.} \times B) / Z_{\text{satu}}
\]

It is necessary to re-estimate the pCFCs age by using PreCFCs.
Conclusion

• Each water mass has characteristic A and B.
• It is possible that we can use B and A as an index of the preformed sea surface state and as a water mass indicator.
• Preformed other gases can be estimated by A and B. It is necessary to re-estimate the various estimates.

Future Plan

• Time series observation
 (Climate change, e.g., NPIW)
• Spatial distribution of N_2 and Ar
• Correlation between surface condition (P, T, Wind speed) and A, B by time series observation during winter on the sea surface.
Thank you!!