Evaluating Fishery Management
Reference Points in a Variable Climate

Melissa A. Haltuch1,2, André E. Punt2, Martin Dom3

1 NOAA Northwest Fishery Science Center
2 School of Aquatic and Fishery Sciences, University of Washington
3 NOAA Alaska Fishery Science Center
What are Biomass Reference Points?

- A fishing mortality rate or level of stock biomass used by scientists to describe current stock status in relation to a management goal.
 - typically the desired level of a stock.

- Calculated in a standard way.

- Linked to stock productivity.
Example Control Rule: West Coast Groundfish

Control rules include goals, reference points, data, and expected management actions. Reference points are quantitative measures used in control rules.
Introduction

- Control rules require estimates of:
 - B_0 (average SSB @ F=0)
 - Current spawning biomass relative to B_0
 - F_{MSY}

- **Low frequency environmental variability, as well as fishing, can impact population abundance, often via recruitment.**

- 2 common ways to estimate B_0 depend upon:
 - Average Recruitment
 - Stock-Recruitment relationship

- BRPs are often treated as exact but realistically BRPs have some level of uncertainty.

- Need measures of BRPs which are robust to environmental forcing (i.e. unbiased and precise)
Previous Simulation Study:
Predicated upon a stationary stock-recruitment relationship
Fit the stock-recruitment model inside the stock assessment model

- **Factors**
 - Life history, Recruitment Variation
 - Data Quantity and Quality:
 - Observation Error, Age-composition sample size, length of the catch time series, and length of the survey.

- **Main Conclusion**
 - B_0 and stock depletion are best estimated with the stock recruitment estimators.
 - B_0 and stock depletion are poorly estimated with the average recruitment estimators.
Objective

- Explore the performance of alternative estimators given climate forcing via the stock-recruitment function:
 - B_0 (average unfished biomass)
 - Stock Depletion: Current biomass relative to $B_0 \left(\frac{B_{\text{last}}}{B_0} \right)$
 - h
 - F_{MSY}

- Groundfish life histories
 - Rockfish
 - Flatfish
 - Semi-pelagic Gadid
The Operating Model: Defining the True State of the System

- Age-structured
- B-H Recruitment (with variability & climate forcing)
- Biological Information –
 - Selectivity (logistic), Weight, and Fecundity at Age
 - Natural mortality (M)
 - Steepness (h)
 - Stock depletion (B_{curr}/B_{0})
- Burn-in = 400 years
- Sampling (with variability)
 - Survey Index of Abundance
 - Survey and Fishery Age Compositions
The Operating Model: Climate Forcing Function

- Deterministic
 - Sine or Step Function
 - Vary where data begin to be collected in relation to the climate forcing function
- 25 year period
- Calculate B_0 using 4 full cycles of the climate forcing function
The Operating Model: Climate Impact on Recruitment

- Allow the deviation about the stock-recruitment relationship to be a function of an environmental variable.

\[N_{y,0} = \frac{4hR_0B_y}{(1-h)B_* + (5h-1)B_y} e^{\varepsilon_y - \frac{\sigma_R^2}{2}} \]

\[\varepsilon_y = \bar{p}E_{y-1} + \eta_y \quad \eta_y : \ N(0, \sigma_R) \]

- Specify the total variance to be composed of two components:
 - Deterministic climate function
 - Random variability

\[\sigma^2_\eta = \sigma^2_E + \sigma^2_R \]

- Each component contributes \(\frac{1}{2} \) of the total variance.
The Operating Model:
Example Population (without error)
The Estimation Model

- Age structured estimation model with an integrated stock-recruitment relationship
 (i.e. same structure as the operating model)

- Estimated quantities
 - B_0, h, environmental link to the stock-recruitment relationship, F_{MSY}
 - Time series of spawning biomass, recruitment and fishing mortality
 - Selectivity functions for the survey and fishery
Alternative Estimation Methods

Three alternative methods of stock assessment are considered:

1. Estimate the annual recruitments, use the estimates of spawning biomass and recruitment to estimate the parameters of a stock recruitment relationship external to the stock assessment. (abbreviation “M₀”)

2. Include the fit of a stock-recruitment relationship inside the stock assessment model. (abbreviation “M_{SR}”)

3. Include the fit to a stock-recruitment relationship which includes the environmental data inside the stock assessment model (Maunder and Watters 2003). (abbreviation “M_{SRE}”)
Alternative Reference Point Estimators

<table>
<thead>
<tr>
<th>Estimator Description</th>
<th>B_0 and Depletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock-recruitment relationship, B_0 equilibrium</td>
<td>SR</td>
</tr>
<tr>
<td>Average recruitment during the whole period of catches (* spawning biomass-per-recruit at F_{MSY} for B_{MSY})</td>
<td>\bar{R}_{ALL}</td>
</tr>
<tr>
<td>Average recruitment during the first 10 years of catches (* spawning biomass-per-recruit at F_{MSY} for B_{MSY})</td>
<td>\bar{R}_{F10}</td>
</tr>
</tbody>
</table>
Simulation Trials:

Parameters constant between simulations

<table>
<thead>
<tr>
<th>Species</th>
<th>Rockfish</th>
<th>Flatfish</th>
<th>Semi-pelagic Gadid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of catch time series</td>
<td>50 years</td>
<td>50 years</td>
<td>50 years</td>
</tr>
<tr>
<td>Extent of observation error</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Age-composition sample size</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Period of Climate Function</td>
<td>25 years</td>
<td>25 years</td>
<td>25 years</td>
</tr>
<tr>
<td>Amplitude of Climate Function</td>
<td>½ total</td>
<td>½ total</td>
<td>½ total</td>
</tr>
<tr>
<td>Natural mortality (yr⁻¹)</td>
<td>0.12</td>
<td>0.2</td>
<td>0.23</td>
</tr>
</tbody>
</table>
Simulation Trials:
Parameters varying between simulations

<table>
<thead>
<tr>
<th>Species</th>
<th>Rockfish</th>
<th>Flatfish</th>
<th>Semi-pelagic Gadid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depletion</td>
<td>0.2, 0.4, 0.6</td>
<td>0.2, 0.4, 0.6</td>
<td>0.2, 0.4, 0.6</td>
</tr>
<tr>
<td>Steepness (h)</td>
<td>0.2, 0.3, 0.5</td>
<td>0.6, 0.8, 1</td>
<td>0.55, 0.75, 0.95</td>
</tr>
<tr>
<td>Extent of recruitment variation</td>
<td>0.2, 0.4, 0.6</td>
<td>0.3, 0.5, 0.7</td>
<td>0.9, 1.13, 1.3</td>
</tr>
<tr>
<td>Shape of the environmental function</td>
<td>Step, Sine</td>
<td>Step, Sine</td>
<td>Step, Sine</td>
</tr>
<tr>
<td>Position of the environmental function at the start of data collection</td>
<td>Peak, Middle, Trough</td>
<td>Peak, Middle, Trough</td>
<td>Peak, Middle, Trough</td>
</tr>
</tbody>
</table>

- **Full Factorial Design**
- **100 simulations for each trial.**
Performance Evaluation

- Estimates of B_0, stock depletion, h, and F_{MSY} are compared to the true values from the operating model.

- Performance statistics:
 - For Each Simulation Within A Trial

\[
\text{Percent Relative Error} = \left(\frac{O - T}{T} \right) \times 100
\]
Preliminary Individual Trial Results

- All life histories
- Lowest level of both recruitment variability and observation error.
- Middle value for steepness.
- Target level of stock depletion (40% B_0).
- Sine shaped climate forcing function.
- Collection of data beginning at the peak of the climate forcing function.
Estimation of Spawning Biomass

Rockfish

Flatfish

Semi-pelagic Gadid

Spawning Biomass

Year

MSR & MSRE
Estimation of Virgin Spawning Biomass

- M_0 - Estimation ability is worst for rockfish

- M_{SR} & M_{SRE}
 - Estimation improves with inclusion of S-R model in assessment
 - Fitting the stock-recruitment model is similar to using average recruitment over the full time period of catches
 - Average over 10 years more variable and typically poorer
 - Estimation is less variable with inclusion of environmental parameter
Estimation of Stock Depletion

- M_0
 - Estimation ability is worst for rockfish
 - using average recruitment during the first 10 years of catches generally better than using the fit of the SR

- M_{SR} & M_{SRE}
 - Estimation improves with inclusion of SR model in assessment for rockfish
 - Estimation ability improves for rockfish
 - Negatively bias for flatfish and gadid
 - Less variable than the M_0 model
 - Estimation is less variable with inclusion of environmental parameter
 - Average recruitment better for gadid
The ability to estimate F_{MSY} is directly linked to the ability to estimate h.

Fitting the SR generally underestimates h and F_{MSY}.

Using average recruitment to calculate F_{MSY} always overestimated F_{MSY}.
Estimation of Stock-Recruitment Steepness & F_{MSY}

- M_0
 - Estimation ability is poor for rockfish, better for flatfish and gadid
 - Using average recruitment results in a huge positive bias for estimates of F_{MSY}

- M_{SR} & M_{SRE}
 - Improved estimation of h
 - M_{SRE} slightly improves estimators for the flatfish and gadid
 - M_{SRE} greatly improves the estimator performance for rockfish
Preliminary Conclusions

- Estimation of F_{MSY} most conservative using the fit of the stock-recruitment relationship and can be grossly overestimated using average recruitment, depending upon the model structure.

- Unclear if fitting S-R model or average recruitment over the observed time series is better for estimating virgin biomass.

- Using the fit of the S-R model to estimate stock depletion is generally better than using average recruitment (same as the previous study).

- M_0 - worst for the long-lived unproductive rockfish

- M_{SR} - showed improved estimation of most quantities of interest

- M_{SRE}
 - Preferred for estimating stock depletion, better estimation of recruitment at the end of the time series.
 - Preferred for estimation of h and F_{MSY}
Acknowledgments

Northwest Fisheries Science Center -
Fisheries Resource Assessment and Monitoring Division

Participants in the Pacific Fishery Management Council
SSC December 2006 B-zero Workshop

Punt and Hilborn Labs, U of W