Designing fish management boundaries in Korean waters using SOM (Self Organizing Maps)

Fisheries Resources Research Team, NFRDI

Jung Hwa Choi, Jong Hwa Park, Dae Soo Chang, Jung Nyun Kim, Hak Jin Hwang, Mi Young Song, Joo Il Kim, Young Il Seo, Sung Il Lee and Sang Chul Yoon
Demersal fish

- Kind of fisheries resources in bottom area ex) flatfish, rockfish
- Larval mortality effected by settlement substrate and plankton biomass
- Distribution pattern is different defend on bottom substrate and environments
- Species diversity is important ecological factor
- Management rule by biological and geographical region
Representative demersal fish in Korean waters

- Decreasing demersal fish catch
- More than 200 species caught by target and bycatch (Dominant: Rockfish, Croaker, Yellow goose fish, Pacific cod, Flatfish, Hairtail)
- Regional management approaching
- Previous regional fisheries resources managed by traditional and geographical separated area

- Using an accurate and various data; developed simple accessing and analyzing method
- Requested reasonable management boundary separation considered environments and ecological aspect
• **Purpose**

- Analysis of demersal fish community structure by SOM
- Examine the relationship between demersal fish biological aspect and environmental condition
- Application of new management rule for each boundaries
• **Data**
 - Seasonal individual and biomass: 2004-2005
 - Sampling gear: Bottom trawl
 - Environments: Temp., Sal. and Depth

• **Data collection**
 - Over than 2 time caught
 - Data unit: catch per swept area
Unsupervised learning algorithm: self-organising map (SOM)

Fig. Schematic diagram of the SOM analyzing step.

STEP 1.
Initialize weight

STEP 2.
Compute distance to all nodes. Select output node with minimum distance

STEP 3.
With sufficient presentation of input vectors, weights will specify cluster.

STEP 4.
Determine the winner node for each input vector.

STEP 5.
Determine neighbors whose distance to the winner node on the feature map of the network is less than or equal. Update weights are decreased with time as convergence is reached.

STEP 6. Go to the STEP 3
Sampling year, season and area

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Code</th>
<th>sp1</th>
<th>sp2</th>
<th>sp3</th>
<th>sp4</th>
<th>sp5</th>
<th>sp6</th>
<th>sp7</th>
<th>sp8</th>
<th>sp9</th>
<th>sp10</th>
<th>sp11</th>
<th>sp12</th>
<th>sp13</th>
<th>sp14</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>Apr</td>
<td>sp-157</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>May</td>
<td>sp-157</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>Jun</td>
<td>sp-157</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>Jul</td>
<td>sp-157</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>Aug</td>
<td>sp-157</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>Sep</td>
<td>sp-157</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>Oct</td>
<td>sp-157</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>Nov</td>
<td>sp-157</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>Dec</td>
<td>sp-157</td>
<td>0</td>
</tr>
</tbody>
</table>

Input data

- **Input layer**

Catch data
Data treatment and computation

- Optimal output layer dimension: 8×10
- Quantization error: 1.562
- Topographic error: 0.037
NFRDI

U-matrix
Dendrogram using the Ward linkage method based on Euclidean distance
MVSP and Primer result of community pattern by biomass data
Ecological Index of Each Cluster Group

- **No. of Species**
 - Cluster 1: b
 - Cluster 2: c
 - Cluster 3: a
 - Cluster 4: a

- **No. of Individuals**
 - Cluster 1: a
 - Cluster 2: a
 - Cluster 3: a
 - Cluster 4: a

- **Diversity**
 - Cluster 1: bc
 - Cluster 2: c
 - Cluster 3: ab
 - Cluster 4: a

- **Total Biomass**
 - Cluster 1: b
 - Cluster 2: ab
 - Cluster 3: ab
 - Cluster 4: a
Environmental index of Each Cluster Group

- Surface Temperature
- Bottom Temperature
- Surface Salinity
- Bottom Salinity
- Depth

Clusters:
a
b
bc

Legend:
a
b
bc

Different letters indicate significant differences.
Typical distribution patterns of species

Cluster 1
Sea raven, Rockfish, Fat cod

Cluster 3
Yellow croaker, Spotted velvetfish

Cluster 2
Flatfish, Sailfin sandfish

Cluster 4
Blackthroat seaperch, John dory, Jack marckerel

Clusters 1 and 2
Pacific cod

Clusters 1 and 3
Croaker

Clusters 3 and 4
Hairtail, Eel

Clusters 1, 3 and 4
Yellow goose fish
Environmental characters of each cluster group

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Temp (Bottom)</th>
<th>Sal (Bottom)</th>
<th>Depth</th>
<th>Area</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>Low</td>
<td>Shallow</td>
<td>Yellow Sea</td>
<td>Typical temperate sea</td>
</tr>
<tr>
<td>2</td>
<td>Low</td>
<td>High</td>
<td>Deep</td>
<td>East Sea</td>
<td>Developed upwelling, water mixing layer</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>High</td>
<td>-</td>
<td>East China Sea</td>
<td>Warm current</td>
</tr>
<tr>
<td>4</td>
<td>High</td>
<td>High</td>
<td>-</td>
<td>South Sea</td>
<td>Seasonal current change</td>
</tr>
</tbody>
</table>
Figure. Simple schematic diagram of food chain around Korean waters.
• Conclusions
 - Four community groups have to consider for new demersal fish management
 - Each groups distinguished by physical environment, depth and bottom temperature
 - New approaching management rule refer to the ecological distinguishing character
Ecological characters of each cluster group

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Biomass</th>
<th>No. Sp.</th>
<th>Diversity</th>
<th>Trophic level</th>
<th>Life history strategy of main sp.</th>
<th>Longevity of main sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Low</td>
<td>-</td>
<td>-</td>
<td>3.5</td>
<td>Equilibrium sp., Lecithotrophic larvae</td>
<td>Short</td>
</tr>
<tr>
<td>2</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>3</td>
<td>Equilibrium sp., Lecithotrophic larvae</td>
<td>Long</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>High</td>
<td>-</td>
<td>3</td>
<td>Opportunistic sp., Small egg</td>
<td>Short</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>High</td>
<td>High</td>
<td>4</td>
<td>Opportunistic sp., Small egg</td>
<td>Short</td>
</tr>
</tbody>
</table>
Remarks and future plan
- Examination of prey-predator relationship in each management boundary by stomach contents
- Understanding the function of main target and dominant species in each area
- Prediction each area community structure changing by climate or physical environments changing
- Understand for the function of demersal fish community on ecosystem
Thank you for your attention!!

choijh@momaf.go.kr