The NEPTUNE Canada Cabled Observatory Data Management System

Capturing and Delivering Terabytes of Data each Day
NEPTUNE Canada Quick Facts

- **NEPTUNE Canada is a regional cabled observatory**
 - 800 km cable loop from Port Alberni (BC)
 - Built and operated by the University of Victoria
 - Represents a total of $82M investment
 - 5 nodes with about 120 instruments, hundreds of sensors
 - Cable Installation in June, nodes and instruments: '08
- **VENUS is a “prototype” for NEPTUNE**
 - 3 km + 30 km lines, ~ 30 instruments, similar concept
NEPTUNE Canada Components

Benoît Pirenne, NEPTUNE Canada, UVic, Victoria, BC

- Project structure reflects components to be built:
 - Undersea infrastructure: engineering (Peter Phibbs, Alcatel Submarine Networks)
 - Instrumentation: science (Mairi Best, with PI teams)
 - Software: IT (Benoît Pirenne, in house development)
 - Education & Outreach: unfunded
NEPTUNE Canada: underwater plant

Benoît Pirenne, NEPTUNE Canada, UVic, Victoria, BC
NEPTUNE Canada: Underwater Plant
- **Instruments**
 - **VENUS**: 3 nodes, ~30 instruments, ~120 sensors
 - **NEPTUNE**: 5 nodes, ~120 instruments, ~400 sensors
Data Management and Archiving System (DMAS)

- Three components:
 - Data acquisition & storage
 - Data access
 - Instrument and Infrastructure control and monitoring

- Features:
 - Very fast data delivery to users
 - Real-time event detection capabilities
 - Event reaction capabilities
 - Fast access to the archive
Challenges:

- Large variety of instruments
- Three types of data flows
 - Scalar (temperature, pressure, amplitude, ...)
 - Multi-dimensional (ADCP matrices, images, ...)
 - Uninterrupted streams (acoustic data from hydrophones, video)
- Wide variety of data formats, instrument protocols
 - ASCII, binary, push, pull, ...
- Enormous differences in data rates
 - CTD: bits/sec \leftrightarrow HDTV camera: Gbps
NEPTUNE Canada Data Acquisition

Benoît Pirenne, NEPTUNE Canada, UVic, Victoria, BC

- **Challenges:**
 - Event detection
 - “if $sensor > threshold then do this”
 - “if {starfish} in $cam-video-stream then $take-cam-hires-still”
 - “if $hydrophone-stream contains whale with probability > 80%”
 - Then ...
 - Policies for event reaction
 - Reaction can be email
 - Reaction can be use of shared instrument
 - Must have ranking/priority per user on the use of shared instruments
Challenges:

- Storage and data compression choices
 - Current estimates for data flow:
 - dominated by HDTV (~1 Gbps native)
 - 1 HDTV at Folger Passage at 8 hrs/day ==> ~25TB/day!
 - Can we afford to store that?
 - Will anybody need it later?
 - How much will we loose if we compress?
 - Compression methods are many and improving. Hoping to decrease volume by a factor 100
- Metadata collection/value-added to data through pre-processing
NEPTUNE Canada Data Acquisition

Benoît Pirenne, NEPTUNE Canada, UVic, Victoria, BC

- **Expectations:**
 - Current estimates (with compression) call for about 47 TB/year
 - + at least one safe copy elsewhere
 - ==> ~100TB/year for the first 3 years or so.
 - Technology available today, but total cost of ownership must be controlled to limit operations costs
 - Local copy? Outsourced storage to Amazon, Google, UCSD?

- **Data distribution:**
 - Download volumes by users unknown
 - Looking at limiting downloads and providing data centre-based pre-processing, visualization.
Data Acquisition

Benoît Pirenne, NEPTUNE Canada, UVic, Victoria, BC
Data Access

Data Access Methods

- Interactive (web search forms)
- Computer-to-computer access (web services)
- Possibility for PIs to host event detection modules at the shore station, data centre or at home
- Future: social network with many web-based data processing and visualization functions

Data Formats

- Scalar sensors: we'll offer what users want. So far for VENUS: CSV, Matlab. Coming up: NetCDF.
- Other complex data: JPG, mp3, ...
- Tried xml with ADCP data: got in trouble with users...
Conclusions

Benoît Pirenne, NEPTUNE Canada, UVic, Victoria, BC

- NEPTUNE data are coming!
- VENUS has been an invaluable learning tool for us
- Prospects of real-time data management are exciting (event detection and reaction)
- Challenges of the exploitation of so much good data coming so fast to everyone are going to be:
 - exciting scientists
 - will quickly generate new needs on the supporting software systems