A "Dressed" Ensemble Kalman Filter for Data Assimilation using Hybrid Coordinate Ocean Model in Pacific

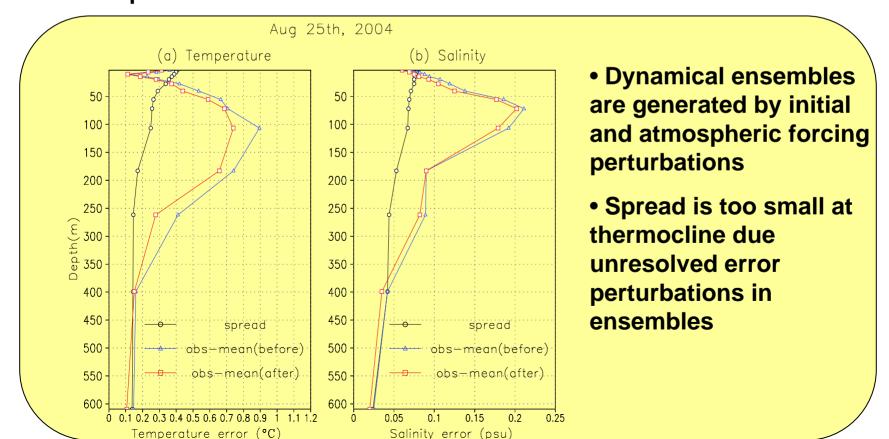
Liying Wan^{1,2}, Jiang Zhu², Hui Wang³ and Laurent Bertino⁴

- 1. National Marine Environmental Forecasting Center, Beijing, China
- 2. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
- 3. Chinese Academy of Meteorological Sciences, Chinese Meteorological Administration, Beijing, China
- 4. Mohn-Sverdrup Center, Nansen Environmental and Remote Sensing Center, Bergen, Norway

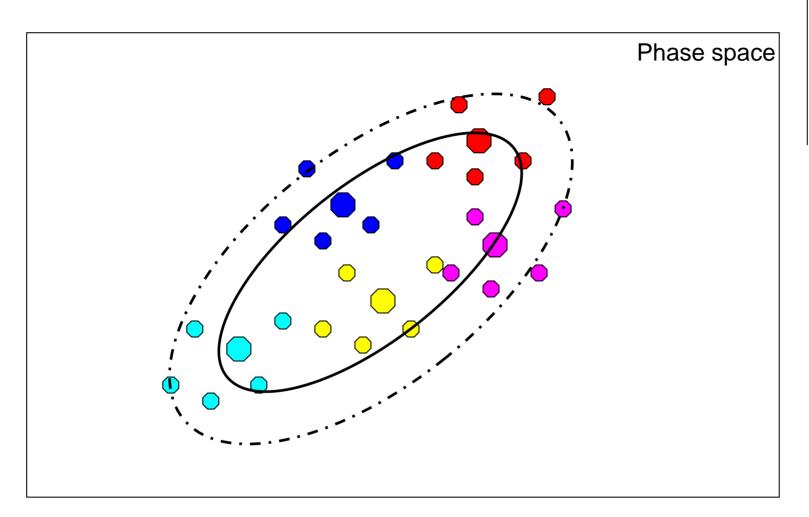
Outline

- Background
- Dressed Ensemble Kalman Filter
- Experiments: model, data, schemes
- Results
- Summary

Background

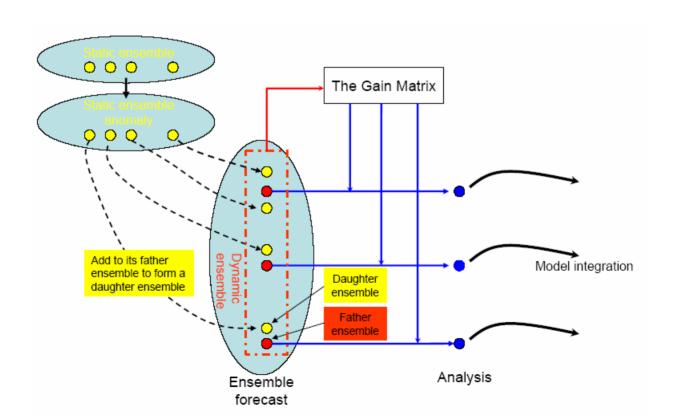


In EnKF, forecast error background covariance is defined by a set of dynamical ensemble


- + flow dependent;
- + nonlinearity of error evolution;
- + ...

Problem

- large computation cost even for "small" size ensemble (e.g., 100);
- error covariance generated confined into a subspace of small dimension.



Idea of dressed dynamical ensemble with stationary ensemble by Roulston and Smith (2003).

Dressed EnKF

Small size (e.g., 10) dynamical ensembles dressed by large size (e.g., 100) stationary ensembles.

- to reduce computation cost dramatically (1 vs 10);
- to compensate for unresolved error perturbations in dynamical ensembles.

Experiments

Model HYCOM

Domain Pacific

ensemble)

H-Resolution 0.5°X 0.5°

Forcing ECMWF high frequency (6 hourly)

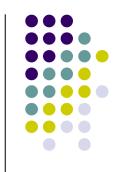
COADS climatology

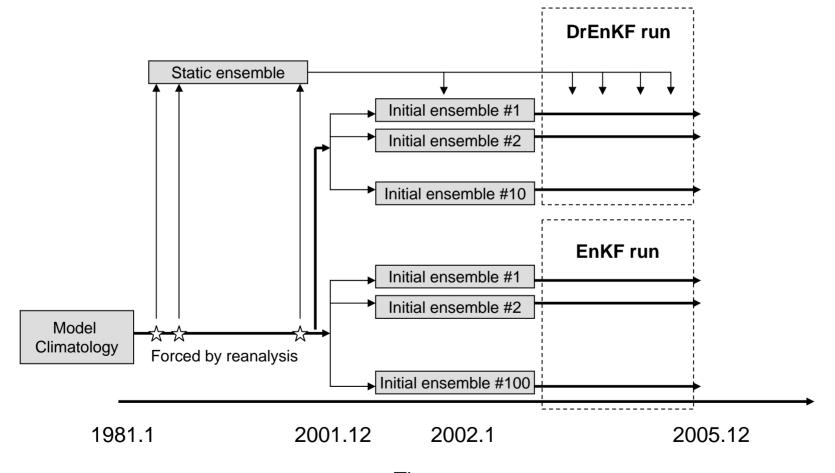
Assimilation EnKF (dynamical ensemble size 100)

Schemes DrEnKF (10 dynamical ensemble, 100 stationary

ARGO Floats

Iongitude

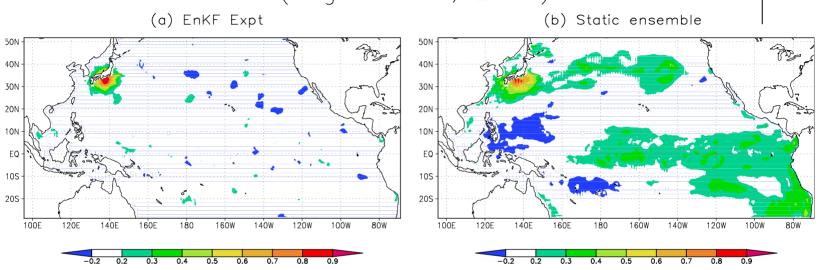

Obs assimilated Altimetry (CLS product, 1/3°, every 7 days)

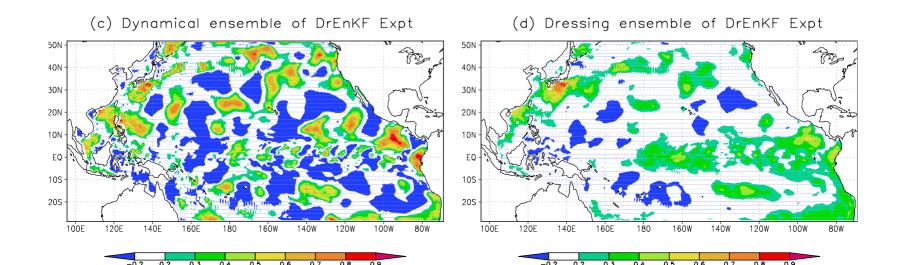

Obs validation ARGO T and S profiles, OISST

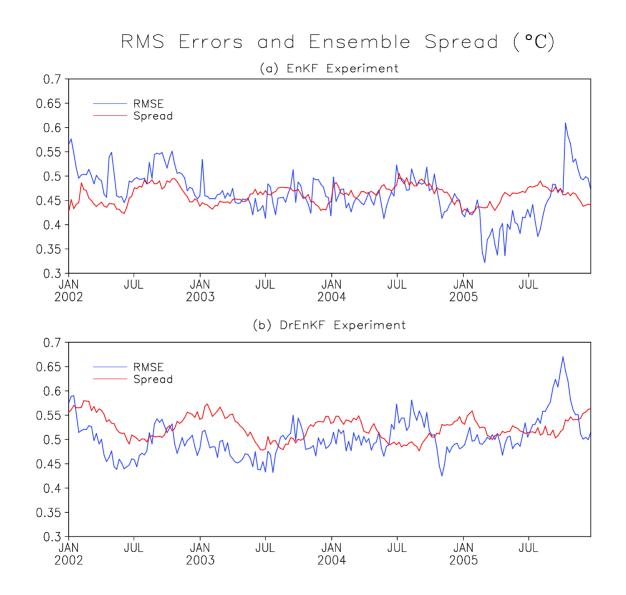
Assimilation period 2002.1-2005.12

EnKF: perturbations on initial state and atmospheric forcing;

DrEnKF: dynamical ensembles same as EnKF

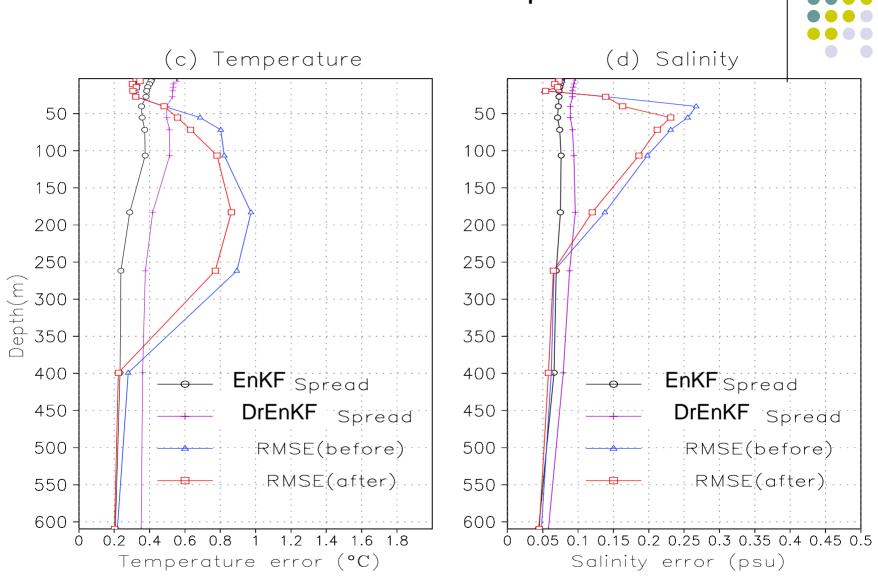


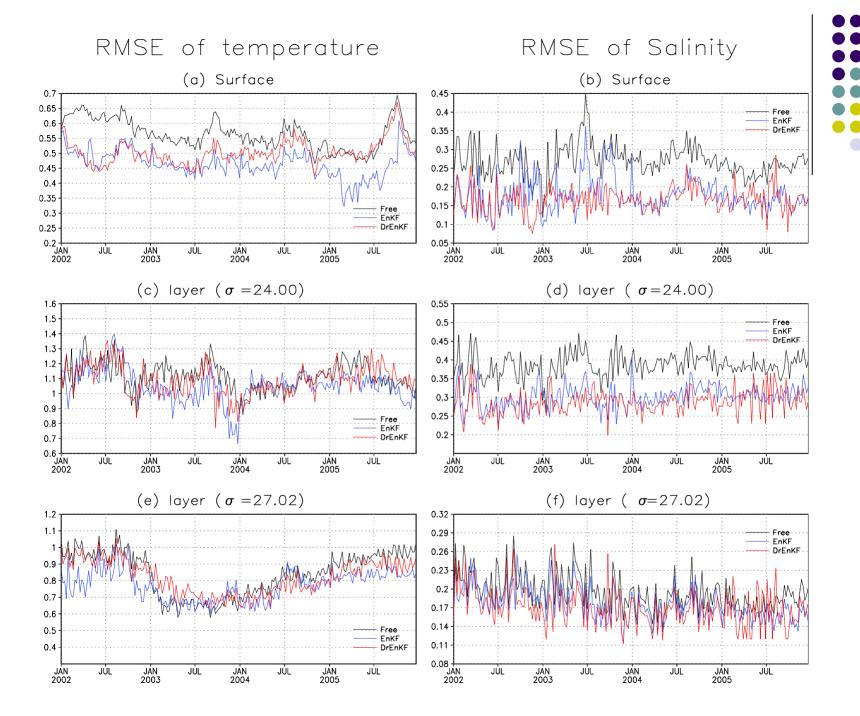



Time

Results

SST Correlation with point (137E,33N) (August 18th, 2004)





RMS errors against OISST.

RMSE of ensemble mean vs spread of DrEnKF

Layer	Free-running	EnKF		DrEnKF	
	T (°C)	T (°C)	Improvement percent (%)	T (°C)	Improvement percent (%)
1	0.564	0.484	14.2	0.506	10.3
2	0.982	0.930	5.3	0.935	4.8
3	0.987	0.936	5.2	0.936	5.2
4	1.001	0.946	5.5	0.948	5.3
5	1.011	0.967	4.4	0.969	4.2
6	1.046	1.009	3.5	1.008	3.6
7	1.124	1.088	3.2	1.100	2.2
8	1.172	1.141	2.7	1.161	0.9
9	1.173	1.170	0.3	1.172	0.1
10	1.215	1.205	0.8	1.209	0.5
11	1.194	1.181	1.1	1.182	1.0
12	1.419	1.412	0.5	1.416	0.2
13	1.341	1.271	5.2	1.287	4.0
14	0.725	0.674	7.0	0.694	4.3

	Free-running	EnKF		DrEnKF	
Layer	S (psu)	S (psu)	Improvement percent (%)	S (psu)	Improvement percent (%)
1	0.270	0.179	33.7	0.176	34.8
2	0.439	0.391	10.9	0.393	10.5
3	0.437	0.391	10.5	0.393	10.1
4	0.439	0.391	10.9	0.394	10.3
5	0.439	0.393	10.5	0.394	10.3
6	0.441	0.408	7.5	0.408	7.5
7	0.456	0.433	5.0	0.437	4.2
8	0.460	0.443	3.7	0.440	4.3
9	0.433	0.414	4.4	0.417	3.7
10	0.360	0.321	10.8	0.318	11.7
11	0.412	0.369	10.4	0.376	8.7
12	0.348	0.287	17.5	0.296	14.9
13	0.248	0.218	12.1	0.208	16.1
14	0.190	0.176	7.4	0.179	5.8

Summary

- The idea of a "Dressed" ensemble is the combination of a dynamical ensemble with a small size (here 10 members) and a static ensemble.
- DrEnKF avoids the underestimation of errors as expected with a dynamical ensemble of small size.
- HYCOM data assimilation experiments show that the DrEnKF can dramatically reduce computation while maintain the performance.

Thank you for your attention!

Parameters in assimilation experiments

Parameters	Description	Value	
N	Number of static ensemble members in DrEnKF Experimen	nt 100	• •
	Number of dynamical members in EnKF Experiment	100	1
M	Number of dynamical members in DrEnKF Experiment	10	
m	Maximum number of local observations	49	
r_0	Observations radius of influence	700 km	
σ_{a}^{0}	Observations error standard deviation	0.05 m	
r_a^e	Observations error decorrelation length	200 km	
$egin{array}{c} \sigma_{\!\!\!\!\!e} \ r_{\!\!\!\!\!e} \ r_h \end{array}$	Initial error Decorrelation length	1000 km	
$\sigma_{\!\!d}^{\!\!n}$	Layer thickness logarithmic standard deviation	10 %	
	Temperature logarithmic standard deviation in Mixed Layer	5 %	
$egin{array}{c} oldsymbol{\sigma}_T \ oldsymbol{r}_{vd} \end{array}$	Vertical correlation coefficient of layer thickness	2.0	
	Vertical correlation coefficient of temperature	3.0	
νT Υ	Decorrelation length of random forcing	10 grid cells	
$egin{array}{c} r_{_{\!$	Atmospheric temperature standard deviation	3 K	
o_{T}	Atmospheric wind stress standard deviation	0.03 N/m2	
o_{Γ}	Wind speed standard deviation	1.6 m/s	

0.2 W/m2

3 days

Radiative flux standard deviation

Time correlation scale