A top-down approach to modelling marine ecosystems in the context of physical-biological modelling

Alain F. Vezina, Charles Hannah and Mike St.John
Empiricists
Data guide the way the processes are characterized and properties described

Mechanistic
Construct models by considering the properties of the components and how these parts interact

Phenomenological
Direct characterization of the holistic properties of the system without elaborating the underlying mechanisms

Approaches to model development

Bottom up: Start by putting as many details as you can in the model and then simplify as need be.

Error of omission

Top down: Start with an integrated phenomenological description of the system at the lowest level of resolution that includes the structures and processes of interest

Increasing model complexity

‘Heated’ debate in the pages of J. Plankton Research

Plankton functional type modelling: running before we can walk?
THOMAS R. ANDERSON

Reply to Horizons Article ‘Plankton functional type modelling: running before we can walk?’ Anderson (2005): I. Abrupt changes in marine ecosystems?
CORINNE LE QUERE

Top down approach to add complexity in an organized, systematic manner
• What we can do now
 – Flexible, adaptive grazing/closure terms

• What we might think about
 – Models that sacrifice process detail to increase the number of interacting components
What we can do now

Flexible/adaptive grazing formulations
Constant parameters

Parameters vary by BG provinces

SeaWiFS climatology (97-03)

Losa et al. 2006. J. Mar. Syst. 61, 230
Ecosystem model with adaptive dynamic properties

Phytoplankton → DIC → Zooplankton → Bacteria

Food preferences
Size structure

Optimal temperature

Detritus

Bioavailability

State variables
Properties

Pahlow et al. Prog. Oceanogr. under review
Dilemma: variable food preferences can reduce ingestion with more prey.

- implicit assumption: no omnivory
 - contradiction to assumption of optimal growth

- Omnivory:
 - no rejection of most abundant food
 - additive filtering rates

(Gentleman et al. 2003)
Food preference property dynamics

Ingestion/Rejection of potential prey
- Specific food preferences
- Species composition: specialists and omnivores
- Variable food preferences (active switching): flexible predators or species succession
- Food preferences optimize growth by adapting to prey-specific ingestion rates
Evaluating adaptive functions

POP model simulations provided 1D forcing at stations

Parameters of ecosystem model fitted to ‘climatologies’ of biogeochemical data for each station.

Attempted local fits (parameters adjusted separately for each station) and global fits (parameters fitted to all 3 stations) with and without adaptive functions.
Impact of model complexity depends on the location and the ecosystem component
“Emergent” functional responses for each consumer group
Linking competition among producers with trophic interactions

Increasing complexity buys you more portability.
Increasing resolution at the phytoplankton level buys you more portability

... but increasing resolution at zooplankton level does not!

What we might think about

More complexity but less detail

PZND models are modules extracted from the complete food web.

They are inherently unstable: cut-off the feedback loops.

Compensate with functional response and closure terms.

But are these fixes capture the dynamics in the whole system?
Prognostic - What will be the future state of the system (prognosis)?

2a) Weather prediction
Predict the wiggles about an observed or mean state.

2b) Climate prediction –
Predict the mean state and the statistics of the wiggles.

The difference between the categories is the level of feedback in the model.
Assembly rules for ecosystems

30+ years of food web ecology.

Search for the rules that govern stability and persistence in complex ecological networks.

Emphasis on interactions among ecological agents rather than on the details of the agents themselves.

http://www.foodwebs.org
Laws et al. (2000) model

Complex structure

Simple rules

‘Tuned’ for max. stability

Assembly rules for ecosystems

Certain types of topology promote ecosystem stability more than others

Most interactions in ecosystems are weak, but are crucial to maintaining stable networks

Martinez et al. 2006.
Relative impacts of structure and functional response in complex food web models (ca. 30 species)

Compartmentalized food webs

Food web stability is promoted by coupling weak and strong interactions through a ‘top predator’

Body size is a powerful constraint

Conclusion

• Two views of intermediate complexity ecosystem models
 - Multiple groups at low trophic levels coupled through a single, flexible top “predator”
 • Sensible way to build a module
 • Agrees with ecological theory
 - Ecological networks
 • Way out of modules
 • Keep as many feedbacks as possible
 • Willingness to sacrifice process detail
 • Use high level rules about stability, persistence, or other global property of network
 • Metabolic ecology (allometry, temperature effects) helps with parameterizations
• Both give more room to a phenomenological “top down” approach to model design
END OF TALK
• Explicit physiological detail of every trophic group is not always necessary.

• Simplifying a model web (which represents the food web of an entire system aggregated to the level of functional groups) to less than 20 to 25% of its original size is rarely beneficial.
Mortality and predation in ecosystem models: is it important how these are expressed?

Elizabeth A. Fultona,*, Anthony D.M. Smitha, Craig R. Johnsonb

a CSIRO Division of Marine Research, GPO Box 1558, Hobart, Tasmania 7001, Australia
b School of Zoology (and Tasmanian Aquaculture and Fisheries Institute [TAFI]), University of Tasmania, GPO Box 252-05, Hobart, Tasmania 7001, Australia

Received 6 March 2002; received in revised form 7 May 2003; accepted 16 July 2003

… the most dynamic and sophisticated functional responses describing grazing require more parameters and validation than the simpler Holling disk equation, but usually still lead to the same general conclusions about the system state and the effects of changes in forcing.
Costanza and Sklar 1985

Articulation $f(dx, dt, N)$

Everything about little

Little about everything
Intermediate complexity

Effectiveness frontier

Effectiveness:
A function of descriptive accuracy and articulation (complexity)

Articulation $f(dx, dt, N)$

Measure of complexity
Gregg et al. 2003. Deep-Sea Res. 50, 3143
… and less sensitivity to model parameters
North Pacific 1977 Regime Shift

- **Ecosystem state**
- **Conditions**

Demersal fish

Pelagic fish and invertabrates

Hare and Manthua 1999

Frank et al. 2005

Scheffer and Carpenter 2003

Figure 2. Different ways in which an ecosystem can respond to change in conditions. Although dynamic systems can respond smoothly to change in external conditions (a), they can sometimes change profoundly when conditions approach a critical level (b) or have more than one stable state over a range of conditions (hysteresis) (c). Although some systems tend to respond in a more non-linear way than do others, the response is not a fixed property of a system. For instance, depending on the depth of the lake, its turbidity can respond in either way to increased nutrient loading. Modified with permission from [1].

http://tree.trends.com