A top-down approach to modelling marine ecosystems in the context of physical-biological modelling

Alain F. Vezina, Charles Hannah and Mike St.John

The Ecosystem Modeller's Universe

Approaches to model development

Bottom up: Start by putting as many details as you can in the model and then simplify as need be.

→ Error of omission

Top down: Start with an integrated phenomenological description of the system at the lowest level of resolution that includes the structures and processes of interest

Getz, W.M. 1998. BioScience 48, 540

Increasing model complexity

'Heated' debate in the pages of J. Plankton Research

Plankton functional type modelling: running before we can walk?
THOMAS R. ANDERSON

Reply to Horizons Article 'Plankton functional type modelling: running before we can walk?' Anderson (2005): I. Abrupt changes in marine ecosystems? CORINNE LE QUERE

Top down approach to add complexity in an organized, systematic manner

- What we can do now
 - Flexible, adaptive grazing/closure terms
- What we might think about
 - Models that sacrifice process detail to increase the number of interacting components

What we can do now

Flexible/adaptive grazing formulations

Losa et al. 2006. J. Mar. Syst. 61, 230

Ecosystem model with adaptive dynamic properties

Zooplankton: Food Preferences and Omnivory

Dilemma: variable food preferences can reduce ingestion with more prey.

- implicit assumption: no omnivory
 - contradiction to assumption of optimal growth
- Omnivory:
 - no rejection of most abundant food
 - additive filtering rates

Food preference property dynamics

Ingestion/Rejection of potential prey

- Specific food preferences
- Species composition: specialists and omnivores
- Variable food preferences (active switching): flexible predators or species succession
- Food preferences optimize growth by adapting to prey-specific ingestion rates

Evaluating adaptive functions

POP model simulations provided 1D forcing at stations

Parameters of ecosystem model fitted to 'climatologies' of biogeochemical data for each station.

Attempted local fits (parameters adjusted separately for each station) and global fits (parameters fitted to all 3 stations) with and without adaptive functions.

Data

Mode

Simpler

"Emergent" functional responses for each consumer group

Linking competition among producers with trophic interactions

Without specialist grazers

With specialist grazers

Brose, U., E.L. Berlow, and N.D. Martinez. 2005. in Dynamic Food Webs: Multispecies Assemblages, Ecosystem Development and Environmental Change.

P.C. de Ruiter, V. Wolters, and J.C. Moore, eds. Academic Press

Increasing complexity buys you more portability

Increasing resolution at the phytoplankton level buys you more portability

2-4 zooplankton groups

Single size adaptable Zooplankton pool Moore et al. 2004

... but increasing resolution at zooplankton level does not!

Friedrichs et al. 2007. J. Geophys. Res. 112, 10.1029/2006JC003852

What we might think about

More complexity but less detail

Hannah, Vezina and St. John. Complexity Theory, Foodweb Theory, and Marine Ecosystem Modelling: A view from 30,000 feet. JGR, submitted

What we do now: the view from food web theory

PZND models are modules extracted from the complete food web

They are inherently unstable: cut-off the feedback loops

Compensate with functional response and closure terms

But are these fixes capture the dynamics in the whole system?

Prognostic – What will be the future state of the system (prognosis)?

2a) Weather prediction Predict the wiggles about an observed or mean state.

2b) Climate prediction – Predict the mean state and the statistics of the wiggles.

The difference between the categories is the level of feedback in the model.

Assembly rules for ecosystems

30+ years of food web ecology.

Search for the rules that govern stability and persistence in complex ecological networks.

Emphasis on interactions among ecological agents rather than on the details of the agents themselves

Friedrichs et al. 2007. J. Geophys. Res. 112, 10.1029/2006JC003852

Assembly rules for ecosystems

Certain types of topology promote ecosystem stability more than others

Most interactions in ecosystems are weak, but are crucial to maintaining stable networks

Martinez et al. 2006.

Emmerson and Raffaelli. 2004. J. Anim. Ecol. 73: 399-409

q=0

Relative impacts of structure and functional response in complex food web models (ca. 30 species)

Martinez, N.D., R.J. Williams, and J.A. Dunne. 2006. in Ecological Networks: Linking Structure to Dynamics in Food Webs. M. Pascual and J.A. Dunne, eds. Oxford University Press.

c=0

q=1

Compartmentalized food webs

Food web stability is promoted by coupling weak and strong interactions through a 'top predator'

Rooney et al. 2006. Nature 442: 265-269

Body size is a powerful constraint

Woodward et al. 2005. Trends Ecol. Evol. 20, 402

Conclusion

- Two views of intermediate complexity ecosystem models
 - Multiple groups at low trophic levels coupled through a single, flexible top "predator"
 - Sensible way to build a module
 - Agrees with ecological theory
 - Ecological networks
 - Way out of modules
 - Keep as many feedbacks as possible
 - Willingness to sacrifice process detail
 - Use high level rules about stability, persistence, or other global property of network
 - Metabolic ecology (allometry, temperature effects) helps with parameterizations
- Both give more room to a phenomenological "top down" approach to model design

Vol. 253: 1-16, 2003

MARINE ECOLOGY PROGRESS SERIES Mar Ecol Prog Ser

Published May 15

Effect of complexity on marine ecosystem models

Elizabeth A. Fulton^{1,*}, Anthony D. M. Smith¹, Craig R. Johnson²

¹CSIRO Division of Marine Research, GPO Box 1538, Hobart, Tasmania 7001, Australia
²School of Zoology and Tasmanian Aquaculture and Fisheries Institute (TAFI), University of Tasmania, GPO Box 252-05, Hobart, Tasmania 7001, Australia

- Explicit physiological detail of every trophic group is not always necessary.
- Simplifying a model web (which represents the food web of an entire system aggregated to the level of functional groups) to less than 20 to 25% of its original size is rarely beneficial.

Available online at www.sciencedirect.com

Ecological Modelling 169 (2003) 157-178

www.elsevier.com/locate/ecolmodel

Mortality and predation in ecosystem models: is it important how these are expressed?

Elizabeth A. Fulton a,*, Anthony D.M. Smith , Craig R. Johnson b

^a CSIRO Division of Marine Research, GPO Box 1538, Hobart, Tasmania 7001, Australia
^b School of Zoology (and Tasmanian Aquaculture and Fisheries Institute [TAFI]), University of Tasmania, GPO Box 252-05, Hobart, Tasmania 7001, Australia

Received 6 March 2002: received in revised form 7 May 2003; accepted 16 July 2003

... the most dynamic and sophisticated functional responses describing grazing require more parameters and validation than the simpler Holling disk equation, but usually still lead to the same general conclusions about the system state and the effects of changes in forcing.

Costanza and Sklar 1985

Intermediate complexity

Effectiveness frontier

Effectiveness

Effectiveness:

A function of descriptive accuracy and articulation (complexity)

Articulation f(dx, dt, N)

Measure of complexity

... and less sensitivity to model parameters

Scheffer and Carpenter 2003

Figure 2. Different ways in which an ecosystem can respond to change in conditions. Although dynamic systems can respond smoothly to change in external conditions (a), they can sometimes change profoundly when conditions approach a critical level (b) or have more than one stable state over a range of conditions (hysteresis) (c). Although some systems tend to respond in a more non-linear way than do others, the response is not a fixed property of a system. For instance, depending on the depth of the lake, its turbidity can respond in either way to increased nutrient loading. Modified with permission from [1].

http://tree.trends.com

Hare and Manthua 1999