PICES MONITOR/BIO Workshop 5
October 27, 2007

The effect of tropical cyclone on the primary production enhancement - Some results from the W-PASS (Western Pacific Air-Sea interaction Study) project

Eko Siswanto, Joji Ishizaka, Mitsuhiro Toratani, Toru Hirawake and Sei-Ichi Saitoh

W-PASS (Western Pacific Air-Sea Interaction Study) project Solas-Japan Chair: Mitsuo Uematsu

Linkages in Biogeochemical Cycles
Between Surface Ocean and Lower Atmosphere

Background

The facts have been known:

- Typhoon passage can enhance ocean phytoplankton chlorophyll-a and primary production,
- The northwest Pacific typhoon activities have been known to be related to El Nino/La Nina events, but

Some information have not been documented yet, such as:

- How El Nino/La Nina events influence ocean primary production in the East China Sea through typhoon activity,
- Complete interannual and interdecadal variations in typhoon-enhanced ocean primary production,
- Estimation of typhoon contribution to summer-fall new production in the East China Sea.

Number of Typhoon per year

台風経路データ(気象業務支援センター)より

Life Time of Typhoon

Spatial Pattern of Frequency of Typhoon Passage (1951-2005)

Number of Typhoon

Study Area

A Case Study for The Outer Shelf of The East China Sea

Siswanto, E., J. Ishizaka, K. Yokouchi, K. Tanaka, C.K.Tan

Geophysical Research Letter, 34 (2007)

Materials and Methods

Study Area:

- Area delineated with blue polygonal
- The west border of the area (green contour) is 0.37 mg m⁻³ chlorophyll-a (Chl-a) isopleth derived from summer mean SeaWiFS Chl-a

Study Period:

Summer-fall period (June – October)

30 <u>Satellite Data (1998 ~ 2004):</u>

- SeaWiFS Chl-a
- SeawiFS photosynthetically available radiation (PAR)
- TRMM/TMI sea surface temperature (SST)

Typhoon Data:

- 13 typhoons (red curves and circles) before and after which clear SeaWiFS Chl-a data are available (from Japan Meteorological Agency)
- Typhoon variables: typhoon transit speed (TS) and maximum sustained wind (MSW)

Primary Production Model:

• VGPM (Behrenfeld and Falkowski, 1997)

$$PP = 0.66125 \times P_{opt}^{B} \times \left[\frac{PAR}{(PAR + 4.1)} \right] \times Z_{eu} \times Chl_{0} \times D_{irr}$$

Combined with specific P^{B}_{opt} model for the ECS (Siswanto et al., 2006)

$$P_{opt}^{B} = 9.06 e^{0.08 \text{ SST}}$$

Chl-a, PP Enhancements Vs. Typhoon Variables, Bottom Depth (BD)

TS: Transit Speed
MSW: Maximum
Sustained Wind

BD: Bottom Depth

Relation to El Nino/La Nina events

Number of typhoons

Trend During the Past 25 Years

Trend Observed:

- During the past 25 years, the number of typhoons has tended to increase (R = 0.48, p < 0.05),
- The mean number of typhoons (red lines) during 1991-2004 period (mean ~3.9 typhoon yr¹) > during 1980-1990 period (mean ~ 2.5 typhoons yr¹),
- As a consequence, mean total PP enhancement (black lines) during 1991-2004 period (133 Gg C d⁻¹) > during 1980-1990 period (82 Gg C d⁻¹).

Estimates of typhoon contribution on the summer-fall new production in the study region

- > Typhoon contribution to summer-fall new production was lowest in 1988 (0.4%) and highest in 2004 (39.7%) (mean 13.7%),
- > Typhoon contribution to summer-fall new production was also higher during El Nino years (16.7%) than during La Nina years (7.2%).

Study Area

Number of Typhoon in 2003 = 21

Trajectory of Typhoon in 2003

Typhoon No.0317 (2003)

デジタル台風 北本 朝展 @ 国立情報学研究所 (NII) http://agora.ex.nii.ac.jp/digital-typhoon/summary/wnp/s/200317.html.ja

2003-10-19 ~2003-10-26
Minimum Pressure 940hPa
Maximum Wind Speed 46.3m/s
Mean Speed 4.67m/s

- SeaWiFS 8days Mean Chl-a
- October 24-31, 2003

Before and After Chl-a iamges

October 8-15, 2003

October 24-31, 2003

Summary

- ➤ Using typhoon variables and bottom depth, PP enhancements due to typhoon passage are possible to be estimated even without satellite ocean color data,
- ➤ In general, because typhoons tended to be more (less) intense during El Nino (La Nina) years, typhoon-enhanced PP was also higher (lower) during El Nino (La Nina) years,
- ➤ Typhoon-enhanced PP has also shown a tendency to be higher during 1991-2004 period than that during 1980-1990 period,
- Typhoon crossing the ECS might contribute within 0.4% 39.7% of the summer-fall new production in the study region of ECS.

