THINKING OUTSIDE THE Z-BOX: How Individual-Based Models (IBMs) Can Advance Zooplankton Ecology

Wendy Gentleman
Dalhousie University, CAN

5th Zooplankton Production Symposium. Pucon, Chile. Mar 2011
ADVANCING ZOOPLANKTON ECOLOGY

In situ

Test hypotheses
Quantify importance
Estimate
Design Studies

In vitro

Identify gaps
Interpret data
Assess sensitivity
Predict

In silico
FIRST Z-DYNAMICS MODEL: RILEY 1947

\[Z = \text{Herbivore volume, converted to } C/m^2 \]

\[\frac{dZ}{dt} = A(P) - R(T) - D - P(C) \]

\(P = \text{Phytoplankton} \)
\(T = \text{Temperature} \)
\(C = \text{Carnivores} \)

Understand Z-box dynamics by variation in rates (arrows)
NPZ ECOSYSTEM MODELS

Questions about Z (or P)
-- Grazing arrow links Z to P

Questions about N
-- Recycling arrow links Z to N

Questions about Z (or N or P)
-- Transport arrows link Z (N & P) to physics & behavior

1950s - 60s: Riley, Steele
1980s: Evans & Parslow, Franks et al.
“NPZ-TYPE” ECOSYSTEM MODELS

Single Z-box ecosystem models still used today
But, arrows & questions limited by aggregate Z-box

1950s - 60s: Riley, Steele
1980s: Evans & Parslow, Franks et al.

Fasham et al. 1990
SOME ECOSYSTEM MODELS USE 2+ Z-BOXES

(Frequently) better grazing & recycling arrows
But, arrows and questions limited by aggregate mesoZ-box
(and maybe microZs too, e.g. Neilson talk on Monday)

Anderson et al., 2010
STRUCTURED MODELS OF MESO-Zs (COPEPODS)

Copepod ecological role governed by stage structure

Eggs → Nauplii → Copepodites

Z_{Copepods}
STRUCTURE MODELS OF MESO-Zs

Copepod ecological role governed by stage structure

Eggs → Nauplii → Copepodites

\[Z_{\text{Egg}} \] → Development → \[Z_{\text{Naup}} \] → Development → \[Z_{\text{Cop}} \]

Egg Production

Ingestion & Mortality arrows typically forcing functions
HOST OF STRUCTURED MODEL APPLICATIONS (1970s - TODAY)

C3s Data
C3s Model
Temp-dependent
C3s Model
Food-limited

Log Scale
Abundance

Gentleman, 2000

Good for patterns of spatial demography and production
But, arrows limited by math of development & transport
INDIVIDUAL-BASED MODELS (IBMs)

For an individual

Metrics

Metrics: Physiology: Stage, Age, Weight, etc.
Behavior: Swim, Emerge date, etc.

“Fitness”

For individual stochasticity = number between 0 and 1

Rate CDF (Temp & Food dependent)
INDIVIDUAL-BASED MODELS (IBMs)

For an individual

Physiological: Stage, Age, Weight, etc.

Behavior: Depth, Emergence Date, etc.

“Fitness”

For individual stochasticity = number between 0 and 1

Population = \(\Sigma \) individuals

IBMs simulate population-level properties that emerge from variations and interactions among individuals (i.e. arrows are result, not a priori)
IBMs GENERATE NOVEL KINDS OF OUTPUT

Variances: abundance, metrics & rates

Physiological History: e.g. Size, Age
Stage duration, Total egg production

Environmental History: e.g. Growing
Degree-day, Location(t)

Carlotti & Nival, 1992
Miller et al., 1998
ADVANTAGES OF IBMs I: AVOID ISSUES OF STRUCTURED MODELS

- Easily parameterize individual fitness-development relationship so “emergent arrows” accurate for range of lab conditions and dynamic environments

Generation Time Model/Data

<table>
<thead>
<tr>
<th>Gentleman et al., 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>σ</td>
</tr>
</tbody>
</table>

- Lagrangian transport: Conceptually straightforward, Codes available & No wiggles
ADVANTAGES OF IBMs II: RIGOROUS STATISTICS

Constant Mortality Different Timing (p < .01)

Mortality (Temp) Different Timing (p < .01)

Mortality (Females) Same Timing (p < .01)

Variation in rate driven by Temp Food only significant at peak

Neuheimer et al, 2010
ADVANTAGES OF IBMS III: NOVEL QUESTIONS

Emergent properties & novel output of IBMs good for study of complex life histories and environmental dependencies

First IBMs in 1970s, gained momentum in 90s

“The individual-based approach is now firmly established in ecology. Hundreds of publications have been based on IBMs” (Grimm & Railsback, 2005)

Z-IBMs among first (e.g. Steele), but Z-IBMs absent/rare in reviews

Why slow popularity rise? Maybe not appreciate utility
Many Z-IBMs motivated by use of Lagrangian transport
Here, showcase Z-IBMs that address other questions...
EXAMPLE 1: DOMINANT SOURCES?

Simulated population at 80 days

Initial locations of Females who spawned survivors & bubbles scaled to total surviving offspring

Insight into connectivity & growth vs. transport

Batchelder et al., 2002
EXAMPLE II: ESTIMATION METHODS BIASES?

• σ_{Growth} & σ_{Size} NOT important for Production (McLaren, 1997)

• σ_{EP} & σ_{Mort} NOT important for Stage-based Mortality (Aksnes & Ohman, 1996; Gentleman et al., in prep)

• σ_{Dur} IS important for Stage-based Mortality

Estimation methods assume stage-ratios are constant

But, $C.V._{\text{Dur}} = 30\%$ varies stage-ratios by 30 – 90%

Error in mortality estimate = 15 – 75%

Gentleman et al., in prep
EXAMPLE III: INFLUENCE OF HUNGER?

Standard response

Implemented hunger response
= when phytoplankton has been low
 they increase max ingestion rate

Feeding history has significant effect

(Batchelder & Williams, 1995)
EXAMPLE IV: TEST FORAY HYPOTHESIS

Standard DVM not explain observations

Forays = trade-off of foraging vs. predation

Implemented behavior

Showed advantage of Forays vs. DVM (mortality reduced by 50%)

Designed field study to test for evidence of forays

Leising & Pierson, 2005
EXAMPLE V: TIMING OF DORMANCY?

- Wake Up Date (WUD)
- Allocation to Fat Date (AFDs)
- Fat/Somatic Ratio to diapause (FSR)

Initialize with range of behavior metrics
Genetic algorithm finds optimal phenology

Timing depends on density-dependence & environmental variability

Fiksen, 2000
IBM's GOOD FOR MANY QUESTIONS...

Emergent properties
Variance & History
Development timing
Transport
Fitness & Environment
Optimal behaviors

BUT IBM's NOT SO GOOD FOR OTHERS

Z-community prod
Trophic influences
Spatial demog & prod
Density-dependence
Pick hammer to suit nail (i.e. use right tool for the question)
IBMs
- Emergent properties
- Variance & History
- Development timing
- Transport
- Fitness & Environment
- Optimal behaviors

Ecosystem
- Z-community prod
- Trophic influences

Structured
- Spatial demog & prod
- Density-dependence

Some IBM “nails” do-able with other approaches (fancy math!)
SYNERGISM OF COMPLEMENTARY APPROACHES

IBMs
- Emergent properties
- Variance & History
- Development timing
- Transport
- Fitness & Environment
- Optimal behaviors

Ecosystem
- Z-community prod
- Trophic links

Structured
- Spatial demog & prod
- Density-dependence