The effects of CO$_2$-induced ocean acidification on the survival and development of early larval stage Antarctic krill (Euphausia superba Dana)

James P. Robinson, So Kawaguchi, Rob King, Patti Virtue, Haruko Kurihara, Atsushi Ishimatsu, and Stephen Nicol
Krill Lifecycle

Source: Nicol, 2006
Developmental ascent

- Nauplius I \(\sim 8 \) days
- Nauplius II \(\sim 13 \) days
- Metanauplius \(\sim 20 \) days
- Calyptopis I \(\sim 30 \) days
Specific Aims

• Investigate the effects of elevated pCO_2 on:
 • 1. Survival in the early larval stages
 • 2. Successful development to calyptopis I
 • 3. Swimming capability and activity level
Experimental set-up
Mortality rate

Mean (+/- S.E.) mortality rate per jar (day⁻¹)

pCO_2 (µatm)

- 380
- 700
- 950
- 2000
Developmental stages

- The proportion of surviving larvae in each jar which had reached the metanauplius or calyptopis I stage at the time of sampling.
Proportion of calyptopis I

![Graph showing the proportion of calyptopis across different pCO_2 values (µatm)].

- Mean ± S.E. (% calyptopis per jar day⁻¹)

<table>
<thead>
<tr>
<th>pCO_2 (µatm)</th>
<th>Mean ± S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>380</td>
<td>2.0% ± 0.1%</td>
</tr>
<tr>
<td>700</td>
<td>1.8% ± 0.1%</td>
</tr>
<tr>
<td>950</td>
<td>1.6% ± 0.1%</td>
</tr>
<tr>
<td>2000</td>
<td>1.4% ± 0.1%</td>
</tr>
</tbody>
</table>
Active swimmers

![Bar chart showing the mean (+/− S.E.) total proportion of swimming larvae per jar at different pCO₂ (μatm) levels: 380, 700, 950, and 2000. The chart indicates a decrease in swimming larvae proportion with increasing pCO₂.]
Developmental ascent

• Combining these results revealed:
• The proportion of calyptopis I larvae which could actively swim in the water column.
• These individuals represented larvae which could complete the developmental ascent.
• Providing a relative measure of changes to recruitment potential under elevated $p\text{CO}_2$.
Developmental ascent

![Graph showing mean (+/- S.E.) proportion of swimming calyptopis larvae per jar across different pCO_2 conditions.]

- **Control**
- **700**
- **950**
- **2000**

pCO_2 (μatm)
CO₂ increase at depth

Weddell Sea

(Source: Kawaguchi et al. 2010)
Tipping point

- At what level of $p\text{CO}_2$ will we begin to see the negative effects on:
 - Embryonic development
 - Larval development
 - Maturation cycle
 - Krill population size
 - The Antarctic ecosystem
Conclusion

• Elevated pCO_2 has the potential to negatively affect larval survival, development, swimming ability and subsequent recruitment to the adult population.

• The experiment needs further replication to confirm the results.
Supervisors: Dr So Kawaguchi, Dr Patti Virtue and Rob King