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1 Introduction 

Inna V. Stonik and Polina A. Kameneva 

National Scientific Center of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 

Vladivostok, Russia 

This publication includes reports given at a workshop on “Conditions promoting Pseudo-nitzschia events 

in the eastern Pacific but not the western Pacific” co-convened by Drs. Vera L. Trainer (USA) and Polina 

Kameneva (Russia) on November 3, 2016 at the PICES 2016 Annual Meeting in San Diego, USA (see 

Appendix 2). The workshop was focused on the diatom, Pseudo-nitzschia, historically associated with 

dramatic negative impacts on the economy of shellfish harvests, the well-being of  marine life and human 

health in the northeastern Pacific PICES member countries (Canada, USA), with little or no impact in the 

northwestern Pacific (China, Japan, Korea and Russia).  

Diatoms of the genus Pseudo-nitzschia (H. Peragallo, 1900) are widely distributed in the plankton 

assemblages of both coastal and open ocean waters (Hasle et al., 1996; reviewed in Lelong et al., 2012 and 

Trainer et al., 2012). Nineteen of the 46 currently recognized Pseudo-nitzschia species are known to 

produce the potent marine neurotoxin, domoic acid (DA; Teng et al., 2016), which can accumulate in fish 

and shellfish and leads to Amnesic Shellfish Poisoning (ASP) in humans, seabirds and marine mammals 

when they consume contaminated fish and shellfish (e.g., Lefebvre et al., 2002). It has been suggested that 

repeated exposure to low levels of DA may cause neuropathic injury to vertebrates, including people 

(Grattan et al., 2007).  

There is clear evidence of contrasting occurrence and impact of the toxin-producing diatom, Pseudo-

nitzschia, between the northwestern and northeastern Pacific. In Canadian and American Pacific waters, 

numerous cases of toxic Pseudo-nitzschia bloom events and mortalities of sea birds, sea lions, whales, and 

other marine mammals have been registered from the time of the discovery of DA in 1987 (Bates et al., 

1989) up to the present day. In 2015, a massive bloom spanning from California to Alaska, linked to 

anomalously warm ocean conditions associated with both El Niño and the Pacific Decadal Oscillation (PDO 

cycles), had major impacts on the economic viability of the shellfish industry and on marine life health 

(McCabe et al., 2016). In contrast, Pseudo-nitzschia did not cause significant economic losses in the 

northwestern Pacific in 2015. Gathered data provide a unique opportunity to make East–West Pacific 

comparisons, and to identify and rank those environmental factors which promote Pseudo-nitzschia success 

as a harmful algae species. Special attention should be paid to the climate-driven environmental changes 

such as ocean acidification, warming of the sea surface, stratification pattern changes, and the availability 

of nutrients to definitively characterize those factors promoting toxic blooms. The recent PICES-supported 

symposium on HABs and Climate Change (May 19–22, 2015 Göteburg, Sweden) and the related synthesis 

paper (Wells et al., 2015) emphasize the importance of studying such extreme events to further our 

understanding of climate impacts on toxic blooms. 
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2 Overview of eastern versus western Pacific differences in 

Pseudo-nitzschia abundance, speciation, and domoic acid 

impacts 

Inna V. Stonik1, Mark L. Wells2 and Vera L. Trainer3 

1 National Scientific Center of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 

  Vladivostok, Russia 
2 School of Marine Science, University of Maine, Orono, ME, USA 
3 National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northwest Fisheries 

  Science Center, Seattle, WA, USA 

In the American and Canadian Pacific, long-lasting and intensive toxigenic blooms of Pseudo-nitzschia 

occur most often in spring and fall within extensive strong upwelling zones near retentive sites. Recent U.S. 

coastwide toxic bloom events are directly related to warm sea surface temperature anomalies associated 

with the El Niño and Pacific Decadal Oscillation (PDO) cycles, leading to faster growth (and northward 

expansion of P. australis habitat as seen in 2015), followed by increased toxin accumulation in razor clams 

(McCabe et al., 2016). Although many (and likely all) Pseudo-nitzschia species have the capacity to 

produce the neurotoxin domoic acid (DA), the most toxic Pseudo-nitzschia species within the California 

Current system are P. australis, P. multiseries and P. cf. pseudodelicatissima (also specified as P. 

cuspidata; reviewed in Trainer et al., 2012), whereas the most problematic highly toxic species off 

California appears to be P. australis (Table 1). 

Smaller, more localized blooms of Pseudo-nitzschia species occur within extensive coastal areas of the 

northwestern Pacific. These events typically occur during fall, winter, and summer in enclosed and semi-

enclosed areas influenced by intensive riverine discharge and in outer coastal areas near localized 

upwelling. Although no serious cases of amnesic shellfish poisoning (ASP) have been recorded in the 

northwestern Pacific region, DA-producing plankton have been  found repeatedly in Russia, Japan, and 

Korea, with traces of DA (up to 3 mg kg–1) recorded in mussels, scallops and razor clams. Contrary to the 

northeastern Pacific, P. multiseries generally is the most common highly toxic Pseudo-nitzschia species in 

the northwestern Pacific region (Table 1).   
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Table 1 Selected species of Pseudo-nitzschia isolated from the eastern and western Pacific that produce domoic acid 

(DA) in laboratory cultures. 

Species 

Maximum DA concentration (pg DA cell–1) 

Eastern Pacific Western Pacific 

P. australis 21.8–37, Monterey Bay, USAa 1.1–2.0, New Zealandb 

  1.74, Chilec  DA detected but concentration not reported, 

Australiad 

P. multiseries 0.021–11.2, Monterey Bay, USAe 20.8, Peter the Great Bay, Russiaf 

   1.03–2.4, Jinhal and Chinhae bays, Koreag 

   1.15–140, Okkiray Bay, Japanh 

    5.7, Ofunato Bay, Japani 

P. cuspidata 0.019–0.031, Washington State USAj 25.4, Australiak 

aGarrison et al., 1992; Guannel et al., 2011; bRhodes et al., 1996, 2004; cAlvarez et al., 2009; dLapworth et al., 2001; 
eMaldonaldo et al., 2002; Doucette et al., 2008; fOrlova et al., 2008; gLee and Baik, 1997; Cho et al., 2001; hLundholm 

et al., 2004; Trimborn et al., 2008; iKotaki et al., 1999; jAuro, 2007 and Trainer et al., 2009b; kAjani et al., 2013 

The duration, toxin concentrations, abundance, area and timing of Pseudo-nitzschia blooms are drastically 

different between the eastern and western Pacific.  The contrasting cases of harmful algal blooms (HABs) 

in these two regions, examined during the PICES 2012 Annual Meeting in Hiroshima, Japan, highlighted 

these differences.  An example data set comparing the relative abundance of Pseudo-nitzschia and relative 

concentrations and impacts of DA from inland and coastal waterways of the U.S./Canada and Japan is 

shown in Figure 1.  

Pseudo-nitzschia multiseries, isolated and cultured from Russian and Japanese waters, were found to 

contain a maximum of 5390 ng ml–1 and 317 ng ml–1 DA, respectively (Kotaki et al., 1999; Orlova et al., 

2008). In contrast, estimates of maximum particulate DA in cultured isolates of Pseudo-nitzschia from 

Washington State are: P. australis (1.0 ng ml–1), P. multiseries (24.0 ng ml–1), P. cf. pseudodelicatissima 

(0.1 ng ml–1; Baugh et al., 2006) and from California: P. australis (up to 90 ng ml–1; Wingert, 2017).  

However, natural monospecific blooms of P. australis have estimated maximum concentrations of ~20 mg 

ml–1; McCabe et al., 2016) and of P. cuspidata (formerly identified as part of the P. cf. pseudodelicatissima 

complex) can reach concentrations of 13.3 ng ml–1; Trainer et al., 2009b, reported as 43 nmole L–1 

particulate DA). However, it is likely that DA content can be much higher; in laboratory experiments a high 

proportion of DA is released from the cell (Wells et al., 2005), and dissolved DA is measured within 

Pseudo-nitzschia blooms (e.g., Trainer et al., 2009a).  It should be noted that in Russian western Pacific 

waters, and perhaps elsewhere in the northwestern Pacific, P. multiseries abundance has decreased 

drastically since 2002 (I. Stonik, unpubl. data), which may be considered as one of the probable causes of 

the low impact of Pseudo-nitzschia blooms in the northwestern Pacific over the past 15 years. 
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Fig. 1 Domoic acid concentrations and duration, timing and area of toxic events in U.S./Canadian and Japanese 

waters, including the inland seas (Salish Sea and Yatsushiro Sea) and outer waters (Region 19 and Pacific coast of 

Washington State – Region 11) from 2000–2012.  The color scale describes intensity, extent or severity in each 

category. 

  

(Region 11) 

(Region 19) 

(Region 11) 

Region 19 
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Table 2 Evidence of the impact of Pseudo-nitzschia and domoic acid in the eastern and western Pacific. 

Area Damage 

Coastal waters of the northeastern Pacific Numerous cases of toxic Pseudo-nitzschia bloom events and 

related high DA concentrations in shellfish (up to 300 mg kg–1) 

and events of sea bird, sea lion, whale, and other marine 

mammal mortalities (reviewed in Lelong et al., 2012 and 

Trainer et al., 2012). 

Coastal waters of the northwestern Pacific Cases of high DA content in mussels (up to 33 mg kg–1) related 

to P. multiseries blooms were documented in the 1990s in 

Korea (Lee and Baik, 1997). No cases of ASP (animal 

mortality) were found. Traces of DA (up to 3 mg kg–1) were 

found in shellfish from Japan and Russia.  

South Asian waters DA contamination in shellfish reported in the Philippines, 

Vietnam and some tropical Asian countries, with no records of 

human poisoning (reviewed in Fukuyo et al., 2011). 

DA = domoic acid, ASP = amnesic shellfish poisoning 

It is not surprising then, that the ecological and economic impacts of DA differ vastly between the 

northeastern and the northwestern Pacific Ocean (Table 2). There have been numerous highly toxic events 

along the U.S. and Canadian Pacific coasts over the past 15 years, in many cases leading to poisoning of 

marine mammals and birds, and high economic costs (Rowles et al., 2017).  The most recent of these 

blooms (in 2015) lasted many consecutive months and caused prolonged closures of shellfish and crab 

fisheries (McCabe et al., 2016). Even so, blooms of toxigenic Pseudo-nitzschia spp. in northeastern Pacific 

coastal waters do not always generate toxic conditions.  In contrast, Pseudo-nitzschia blooms in the 

northwestern Pacific are rarely highly toxic, and economic losses are minor in comparison (Table 2).  While 

there is no definitive understanding of the reasons for these stark differences, some of the likely 

environmental factors potentially may include the following:  

1)  Intensive, broad upwelling zones along the continental shelves off the eastern margins of the Pacific 

appear to promote the competitive success of Pseudo-nitzschia species, and once firmly established as 

a seed population, the increased nutrient flux into surface waters facilitates the generation of high 

Pseudo-nitzschia biomass. By contrast, intensive upwelling zones are far more restricted in scale in 

western Pacific nearshore waters, where the coastal oceanography is influenced more by enclosed and 

semi-enclosed seas and periodic intensive riverine discharge (Table 3). 

Table 3 Northeastern–northwestern Pacific general hydrological differences (modified from McKinnell and Dagg, 

2010). 

Northeastern Pacific Northwestern Pacific 

Intensive upwelling (California Current System) Summer and winter monsoons, coastal upwelling during fall 

months (northwestern portion of Region 19) 

Freshwater input and oceanic eddies (e.g., in the 

Alaska Current region) 

Large freshwater input via Amur River and local upwellings 

(Sea of Okhotsk). 

 Inflows from the Kuroshio and Changjiang River (Yellow 

and East China seas (Regions 20 and 21) 



Stonik et al.  Overview 

PICES Scientific Report No. 53  7 

 The interannual variation of upwelling in the Russian waters of Region 19 is determined mainly by the 

varying pressure of the Siberian High, which is a major center of action in the East Asian region (Zhabin 

et al., 2017). Upwelling intensity is also influenced by the magnitude of the atmospheric pressure 

gradient between the eastern part of the continent and the North Pacific Ocean. An increased upwelling 

intensity is observed in years with a developed Siberian High. Accordingly, during a weak Siberian 

High, the upwelling intensity in the northwestern portion of Region 19 declines. Intensive upwelling 

events appear to facilitate the competitive success of Pseudo-nitzschia species. For this reason, Zuenko 

and Rachkov (2015) hypothesize that the decrease in the abundance of P. multiseries in the 1990s in 

the northwestern portion of Region 19 can be related to the long-term tendency of the Siberian High 

and the summer monsoon to weaken during 1990–2015. 

2)  The supply of macronutrients (N, P, Si) often is cited as a contributing factor to increasing intracellular 

concentrations of DA in laboratory cultures (reviewed in Lelong et al., 2012), although there is no 

consistent pattern for this relationship in coastal waters (e.g., Trainer et al., 2009a). Sea surface 

concentrations of dissolved nutrients (N, P, Si) are higher in the northwestern Pacific Ocean than in the 

northeastern region during winter, but are similar by mid-summer, reflecting a greater nutrient 

drawdown (Fig. 2). In addition, given the importance of Si in building diatom cell walls, it may be no 

coincidence that the Si/N drawdown ratio is greater in the northwestern Pacific than the northeastern 

Pacific and that diatoms have a greater predominance along the Asian coast (Yasunaka et al., 2014).  

The success of toxic Pseudo-nitzschia and accumulation of cellular DA under nutrient stress in the 

northeastern Pacific have been demonstrated in recent field studies (McCabe et al., 2016; McKibben 

et al., 2017). Pseudo-nitzschia can grow and produce DA using various nitrogen sources (nitrate, 

ammonium and urea; Armstrong et al., 2007).  Pseudo-nitzschia’s resilience is demonstrated also in its 

ability to occupy the same ecological niche as flagellates (e.g., the massive euglenoid bloom described 

in Trainer et al., 2009b). 

 

Fig. 2  World Ocean Atlas 2013 annual climatology (Garcia et al., 2014). For silicate and nitrate concentrations 

(mol L–1) see https://www.nodc.noaa.gov/OC5/woa13f/index.html. Contour interval = 5. 

Summer N

Spring N

Summer Si

Spring Si

https://www.nodc.noaa.gov/OC5/woa13f/index.html


Overview  Stonik et al. 

8 PICES Scientific Report No. 53 

3)  Coastal waters of the northwestern Pacific obtain more dissolved micronutrients from riverine discharge 

(Amur, Yangtze and others) than in the northeastern Pacific, and there is greater iron enrichment in the 

west as a consequence the southward flow of the Oyashio Current enriched with iron from the Sea of 

Okhotsk (Nishioka et al., 2011; Whitney, 2011). Areas with limiting iron concentrations in the 

northeastern Pacific have been proposed to be sites where Pseudo-nitzschia outcompete other 

phytoplankton and become highly toxic (Trainer et al., 2009b). There is evidence for a direct linkage 

between the rate of DA production and limitation of cell growth by the micronutrient Fe (Maldonado 

et al., 2002; Wells et al., 2005).  The more widely distributed riverine iron inputs, generally broader 

continental shelves (thus iron input from marginal shelf sediments), and higher rates of aerosol iron 

inputs (Fig. 3) in the northwestern Pacific region may all contribute to reducing the rates of DA 

production, and thus retained intracellular DA concentrations (i.e., reduced cell toxicity). 

 
Fig. 3 Model of the distribution of the concentrations of iron dust in surface waters of the Pacific Ocean based on 

real-world observations (modified from https://www.nasa.gov/topics/earth/features/modis_fluorescence_briefing.html, 

Mike Behrenfeld, Oregon State University).  

It is clear that frequent and intense Pseudo-nitzschia blooms cause high DA toxicity in shellfish and the 

mortality of marine birds and mammals in the northeastern Pacific, and that despite the presence of Pseudo-

nitzschia species capable of DA production in the northwestern Pacific, sometimes reaching bloom 

concentrations of >1 million cells L–1, no severe toxic episodes have been reported from the northwestern 

Pacific. Part of this disparity may be related to the apparent dominance of only one highly toxic species 

(P. multiseries) in the northwestern region vs. three primary species (P. multiseries, P. australis, and 

P. cuspidata) in the northeastern Pacific, but it is far more likely that differences in the frequencies and 

magnitude of these toxic bloom events are tied to underlying differences in oceanographic conditions in 

ways that are not yet understood. Two challenges guide the way forward. The first is to understand the 

fundamental limitations to the development of large blooms of toxigenic Pseudo-nitzschia spp., vs. other 

diatom species, and how these drivers differ between the northeastern and northwestern Pacific.  The second 

is to constrain the environmental circumstances that, once a Pseudo-nitzschia bloom develops, leads to 

increased intracellular retention of DA.  The North Pacific provides a unique platform that, through 

collaboration among PICES member countries, can serve as a resource for investigating the root 

mechanistic causes for toxic diatom blooms. 
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Monitoring domoic acid contamination in shellfish 

Domoic acid (DA; Fig. 1) was first recognized as an amnesic shellfish poisoning (ASP) toxin in Canada 

(Wright et al., 1989) and the causative organism was identified as Pseudo-nitzschia multiseries (formerly 

Nitzschia pungens f. multiseries) (Bates et al., 1989). After this incident, monitoring systems were 

established in Canada, U.S., and in some European countries so as to prevent further ASP incidents. The 

Japanese government also took an interest in determining whether ASP occurs in Japan. The Fisheries 

Agency started to investigate the possibility of shellfish as a vector of ASP in Japan. This investigation was 

initiated by starting a series of projects coordinated through regional branches of the Fisheries Research 

Institute and a few university teams, including Kitasato University.  

 

Fig. 1 Structure of domoic acid (DA). 

In order to determine the possibility of ASP occurrences in eastern Japan, the monitoring of DA in shellfish 

began in Ofunato Bay in 1994. Five specimens of cultured scallops, Mizuhopecten yessoensis, and mussels, 

Mytilus galloprovincialis, were collected from the Shizu station (Ofunato Bay, station A, Fig. 2) monthly 

from April 1994 through February 1995. The digestive gland of scallops and edible part of mussels were 

extracted with 50% methanol, then analyzed by HPLC with UV detection (242 nm) after purification 

through a Sep-Pack C18 cartridge (Quilliam et al., 1989). DA was detected from November 1994 to 
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February 1995 (Table 1, Kotaki et al., 1996). Maximum toxin levels were 0.8 μg g–1 (January 1995) in 

scallops and 2.8 μg g–1 (November 1994) in mussels. These values were well below the regulatory action 

level of 20 μg g–1. This monitoring was performed monthly until 1997 and irregularly thereafter but since 

that time, no DA has been detected in shellfish. 

Fig. 2 Map of the monitoring sites. Monitoring of DA in shellfish and Pseudo-nitzschia were performed only at the 

Ofunato Bay station A (known for PSP toxins; Ogata et al., 1982). Monitoring of DA in shellfish after the 2011 tsunami 

was performed at Ofunato Bay station A and Okirai Bay station B. Monitoring sites OKB: A–E (net tow), B (shellfish), 

OFB: A–D (net tow), A (shellfish). 

 

Table 1 DA concentrations in shellfish collected from Ofunato Bay (from Kotaki et al., 1996). 

Date of collection1 

Mussel  

(μg g–1)2 

Scallop  

(μg g–1)3 

Nov. 16, 1994  2.8 0.3 

Dec. 14, 1994  0.5 ND 

Jan. 11, 1995  0.5 0.8 

Feb. 15, 1995  1.2 ND 

ND = not detected 
1 Shellfish were collected from April, 1994 to February, 1995. 
2 Edible tissue was used for the analysis. 

3 Digestive gland was used for the analysis. 

  

Monitoring sites 
OKB: A-E (net tow) 
        : B (shellfish) 
OFB: A-D (net tow) 
       : A (shellfish) 

Japan 

Pacific Ocean 
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Screening of domoic acid-producing diatoms 

Screening for DA-producing Pseudo-nitzschia was also performed in Ofunato Bay in 1994. Pennate 

diatoms were isolated from plankton net samples obtained at the same station (see Fig. 2) and cultured for 

the detection of DA by HPLC-fluorescence analysis (Pocklington et al., 1990). DA was analyzed two weeks 

after cells reached stationary growth, at about three to four weeks in culture, because it has been shown that 

DA content increases in the late stationary growth phase for some species of Pseudo-nitzschia (Bates et al., 

1991). One out of 44 isolates showed a large peak identical to the known DA peak (Kotaki et al., 1999). 

The strain was mass cultured and confirmed to produce DA by electrospray ionization mass-spectrometry 

(ESI/MS) and proton nuclear magnetic resonance (NMR). This isolate was morphologically identified as 

P. multiseries, the same species as identified in the Canadian ASP incident. The distribution of 

P. multiseries was assessed in Ofunato Bay and nearby Okirai Bay. All of the P. multiseries isolated from 

these locations were confirmed to produce high levels of DA in culture experiments. The cells grew from 

1,000 cells mL–1 to approximately 100,000 cells mL–1 in one week, reaching a maximum of approximately 

120,000 cells mL–1 at day 12 and decreasing gradually thereafter until the last day of culture (day 27; Fig. 3). 

DA did not increase much during the exponential growth phase. However, DA content started to increase 

one week after reaching the stationary growth phase and suddenly increased after two weeks in culture until 

the end of the culture, with a maximum DA concentration of 6.7 pg cell–1. High DA content was observed 

only in the late stationary growth phase. 

 
Fig. 3  Cell growth and DA production in Pseudo-nitzschia multiseries (Kotaki et al., 1999). 

 

Domoic acid-producing diatoms other than P. multiseries 

Ofunato Bay isolates of Pseudo-nitzschia were cultured for DA measurement using the same protocol as 

for P. multiseries, followed by morphological identification. Using HPLC-fluorescence analyses, the 

Pseudo-nitzschia species P. pseudodelicatissima, P. delicatissima, P. pungens, P. turgidula, P. fraudulenta, 

P. cuspidata, P. subpacifica, P. subfraudulenta, P. heimii and two unidentified Pseudo-nitzschia-like 

pennate diatoms were confirmed to produce low levels of DA (< 1 pg cell–1) (Kotaki, 2008). 
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Monitoring after the 2011 Great East Japan Earthquake  

A large tsunami that occurred following the 2011 Great East Japan Earthquake impacted Ofunato Bay and 

Okirai Bay. The habitat of Pseudo-nitzschia and their association with bacterial assemblages may have 

been altered in response to the tsunami. To estimate the ASP potential after this disaster, monitoring of DA 

in scallops and mussels was performed every three months at one station in both bays in 2013, 2014 and 

2015. At the same time, DA analysis was performed by HPLC with fluorescence detection on plankton net 

samples towed twice from 20 m depth at five stations in Okirai Bay and 2 to 4 stations in Ofunato Bay 

(Fig. 2). DA was not detected in any of the shellfish samples during the monitoring period. However, DA 

was detected in the plankton net tow samples at concentrations (converted to 1 L of seawater equivalent) 

of 45–330 pg L–1 (Ofunato Bay, September and October, 2013), 16–205 pg L–1 (Okirai Bay, June and 

October, 2013), 7–163 pg L–1 (Ofunato Bay, Jun 2014 and January 2015), 17–154 pg L–1 (Okirai Bay, May, 

June and August 2014), 7–720 pg L–1 (Ofunato Bay, September and December 2015) and 33–56 pg L–1 

(Okirai Bay, May 2015).  

Representative positive samples collected in 2014 and 2015 were further purified by a Sep-Pak C18 

cartridge and DA was confirmed by liquid chromatography/time-of-flight/tandem mass spectrometry (LC-

TOF MS/MS). An attempt was made to isolate Pseudo-nitzschia from each net sample. In 2013, three P. 

multiseries isolates showed low DA content (a mean DA concentration of 0.64 ± 0.38 pg cell–1) in culture 

experiments. In 2014, one isolate of P. multiseries was established and showed high DA content after five 

weeks in culture (314 ng mL–1, 9.0 pg cell–1). These results suggest that the origin of at least some of the 

DA in plankton net samples was P. multiseries. These results showed that although P. multiseries was 

present in both bays after the 2011 tsunami, this species did not bloom to high enough concentrations for 

significant levels of DA to be accumulated by shellfish. The ASP potential in both bays before and after 

the disaster appeared to be low. 

Factors affecting DA production 

The effects of nitrogen (NO3 + NO2), phosphate (PO4), silicate (SiO2), and dissolved iron on DA production 

in batch culture experiments were investigated under axenic and non-axenic conditions. As shown in Fig. 

4A, the growth of both axenic and non-axenic cultures was almost the same, reaching stationary growth 

phase after ~10 days and maintaining the same cell concentrations until the end of the culture experiment 

(37 days). However, DA production was very different between axenic and non-axenic cultures. In non-

axenic cultures, moderate DA production was seen immediately after reaching stationary phase and 

significant DA production was observed one week after reaching stationary growth (Fig. 5B and C). 

Changes in the four nutrients described above were measured and their relationship with DA production 

was assessed.  
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Fig. 4 Batch culture experiments on DA production by P. multiseries under axenic and non-axenic conditions.  

(A) Control growth curves, (B) N (NO3 + NO2) treatments, (C) PO4 treatments (D) SiO2 treatments. 

 
Fig. 5 Batch culture experiments on DA production by P. multiseries under axenic and non-axenic conditions.  

(A) Control growth curves, (B) Concentrations of dissolved iron and DA under non-axenic conditions,  

(C) Concentrations of dissolved iron and DA under axenic conditions. 

(A)

(C)(B)
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The changes in N and P did not appear to explain the difference in cellular DA content under axenic and 

non-axenic conditions. Significant decreases of Si and dissolved iron were observed and were almost 

depleted at 10 days both in axenic and non-axenic cultures. DA increased remarkably just after stationary 

growth was reached in non-axenic culture, while DA increased slightly three weeks after reaching 

stationary growth in axenic culture. This result shows the potential role of bacteria on DA production of P. 

multiseries. The remaining question was whether depletion of silicate or iron was correlated with DA 

production and associated with bacterial effects. The iron concentration in cells increased continuously 

during the exponential growth phase in axenic and non-axenic cultures. After reaching the stationary growth 

phase, iron concentrations did not increase but were maintained at the same level in the axenic culture while 

iron concentrations increased continuously in the non-axenic culture (insoluble iron became soluble and 

was taken into cells in non-axenic culture but not in axenic culture), indicating the possibility that bacteria 

might help P. multiseries cells acquire insoluble iron, resulting in DA production (or accumulation in the 

stationary phase when growth ceases).  

More supporting data were obtained by a 3-fold decrease in DA production after the addition of a 1 

concentration of iron at 14 days.  Likewise, a 5- and 10-fold iron addition corresponded to the decrease in 

DA but this decrease was not correlated with added EDTA-Fe (Kotaki et al., 2004). 

As P. multiseries produced low levels of DA even under axenic conditions, intracellular bacteria were 

confirmed by measurement of bacterial rRNA genes in P. multiseries cells (Kobayashi et al., 2003). Amounts 

and species of bacteria appear to be important factors for the production of DA by P. multiseries. 

Discussion 

Monitoring of DA in shellfish and the screening of DA-producing diatoms were performed in Ofunato Bay 

after the Canadian ASP incident, resulting in detection of a small amount of DA in scallops and blue 

mussels. The pennate diatom P. multiseries was isolated and identified as the source of DA in shellfish 

from Ofunato Bay and Okirai Bay. DA production was investigated in batch culture experiments, showing 

that P. multiseries produces DA with a significant accumulation only in late stationary growth.  

Conditions necessary for ASP occurrence are: 1) presence of highly toxic Pseudo-nitzschia such as 

P. multiseries, 2) high abundance of toxic Pseudo-nitzschia, 3) sustenance of the bloom for more than two 

weeks with low nutrient supply (stress), 4) uptake of toxic Pseudo-nitzschia by shellfish, and 

5) consumption of the toxic shellfish by humans.  

Very few bays in Japan satisfy the above conditions, which apparently is the reason why ASP has not 

occurred, and the potential for ASP in Japan is low. Nine species of Pseudo-nitzschia isolated from Ofunato 

Bay and confirmed to be DA producers do not seem to contribute to ASP occurrences because of their very 

low toxin content. The National Government decided against continuing DA monitoring in shellfish in 

Japan after several years of monitoring concluded without detection of DA in excess of the regulatory limit 

(20 μg g–1). Environmental parameters related to ASP have not been measured in Japan for the same reason. 

Monitoring of DA in shellfish and Pseudo-nitzschia were performed for a number of years in Ofunato Bay 

and Okirai Bay after the East Japan tsunami in 2011. Monitoring of DA after this tsunami gave the results 

as before: the ASP potential seems to be low in eastern Japan coastal areas.  

DA production characteristics were further investigated in batch culture experiments using P. multiseries. 

The results of these experiments are: 1) cellular DA increases significantly only in late stationary growth 
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after nutrient depletion, 2) co-existing bacteria help facilitate DA production, 3) DA production appears to 

correlate with the uptake of insoluble iron into the P. multiseries cells, 4) bacteria may help with insoluble 

iron acquisition by P. multiseries cells.  

How bacteria help P. multiseries cells acquire insoluble iron is a remaining problem to be solved in the 

future. One possible idea is that bacteria make the siderophore-like DA or DA derivatives (Wells et al., 

2005) to help P. multiseries to assimilate insoluble iron in iron-deficient waters. The comparison of 

environmental parameters, including iron concentrations, will help to explain the immense differences in 

DA problems faced by countries in the eastern versus western Pacific coastal areas.  
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4 Pseudo-nitzschia blooms in China 
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Sixteen blooms of Pseudo-nitzschia (including co-occurrence with other species) have been recorded since 

this species was first observed in 1987 along the Chinese coastline. The cumulative area in which these past 

blooms have been observed is 1,280 km2.  Blooms dominated by Pseudo-nitzschia were observed nine 

times and have not caused the death of marine life, or large economic losses. 

Pseudo-nitzschia species 

Pseudo-nitzschia delicatissima 

There are four records of Pseudo-nitzschia delicatissima blooms along China’s coastline, with three of them 

occurring in the East China Sea, in May, August, and September 2009 (Table 1). The recorded area of these 

three blooms was relatively small, with the largest area of only 25 km2. However, in May 2009, the bloom 

occurred together with Noctiluca scintillans, with a density of 2.0 × 105 cells L–1 and in August 2007, a 

Pseudo-nitzschia delicatissima bloom coincided with Gymnodinium catenatum in an area of about 400 km2 

in Liaodong Bay in the Bohai Sea coastal area. The Pseudo-nitzschia delicatissima bloom did not cause the 

death of marine life, or any other major disasters. 

Table 1  Pseudo-nitzschia delicatissima blooms in China’s coastal areas.  

Date Location 

Region 

code* 

Area 

(km2) Major components 

Aug. 21–24, 2007 Liaodong Bay Huludao 

Bohai Sea 

CN-02 400 Gymnodinium catenatum, 

Pseudo-nitzschia delicatissima 

May 30, 2009 Ningde Beishuang Island 

East China Sea 

CN-08 10 Noctiluca scintillans, Pseudo-

nitzschia delicatissima 

Aug. 4–6, 2009 Fujian Huangqi Peninsula 

East China Sea 

CN-08 25 Pseudo-nitzschia delicatissima 

Sep. 1–7, 2009 Fujian Huangqi Peninsula 

East China Sea 

CN-08 3 Pseudo-nitzschia delicatissima 

*Region code locations are shown in the Harmful Algae Event Database (HAEDAT) website, 

http://haedat.iode.org/browseGrids.php?countryID=7&mapOnly=1. 

http://haedat.iode.org/browseGrids.php?countryID=7&mapOnly=1
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Pseudo-nitzschia pungens 

There have been nine blooms of Pseudo-nitzschia pungens in China’s coastal areas since 1987. Among 

them, five events were observed from May to September 2008 (Table 2). Six cases of P. pungens blooms 

occurred in the East China Sea, with a cumulative area greater than 830 km2. All these blooms occurred 

together with other species, such as the diatoms Eucampia cornuta, Thalassiosira rotula, Skeletonema 

costatum, and the dinoflagellates Prorocentrum donghaiense and Ceratium furca.  

From May 23–24, 2008, Prorocentrum donghaiense dominated but co-occurred with P. pungens, resulting 

in a bloom of 500 km2 near Ningbo Youcai Island in the East China Sea. From September 10–13, 2008, P. 

pungens dominated with Skeletonema costatum causing a bloom of 200 km2 with a density of 6.37 × 107 

cells L–1 in the Shengshan Island area. The density of Prorocentrum donghaiense was 2.45  106 cells L–1. 

Two cases of small-scale P. pungens blooms, with a total area of 1 and 6 km2, occurred in the Bohai Sea in 

September 2008 and 2010, coinciding once with a Skeletonema costatum bloom. In May 2011, a P. pungens 

bloom of 20 km2 was recorded in the Yellow Sea . 

These blooms of Pseudo-nitzschia pungens were nontoxic and did not cause serious ecological and 

economic losses. 

Table 2 Statistics of Pseudo-nitzschia pungens blooms in China’s coastal areas. 

Date Position 

Region 

code* 

Area 

(km2) Major components 

May 1987 Xiamen Baozhu Island 

East China Sea 

CN-08  14 Eucampia cornuta, Pseudo-

nitzschia pungens 

Late Aug., 2003 Xiangshan Damutu 

East China Sea 

CN-07  1 Pseudo-nitzschia pungens, 

Prorocentrum donghaiense 

May 23–24, 2008 Ningbo Youcai Island 

East China Sea 

CN-07  500 Prorocentrum donghaiense, 

Pseudo-nitzschia pungens 

June 10–14, 2008 Xiapu Sansha Bay 

East China Sea 

CN-08  15 Pseudo-nitzschia pungens, 

Thalassiosira rotula 

July 16–18, 2008 Daishan Dachangtu 

East China Sea 

CN-07  100 Ceratium furca,  

Pseudo-nitzschia pungens  

Sep. 5, 2008 Yantai Sishili Bay 

Bohai Sea 

CN-05  1 Pseudo-nitzschia pungens 

Sep. 10–13, 2008 Shengshan Island 

East China Sea 

CN-07  200 Pseudo-nitzschia pungens, 

Skeletonema costatum 

Sep. 6–10, 2010 Yantai Mashanzhai 

Bohai Sea 

CN-04  6 Pseudo-nitzschia pungens 

Skeletonema costatum 

May 23, 2011 Liaoning Donggang 

Yellow Sea 

CN-01  20 Pseudo-nitzschia pungens  

* Region code locations are shown in the Harmful Algae Event Database (HAEDAT) website, 

http://haedat.iode.org/browseGrids.php?countryID=7&mapOnly=1 
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Newly recorded species of Pseudo-nitzschia in China 

New species of Pseudo-nitzschia were recorded in June 2000, September 2001, and July 2008. All these 

events were found near Shenzhen Bay, South China Sea. The scale of these blooms was small and did not 

cause obvious harm (Table 3). The blooms were caused by a mixture of species. Together with Pseudo-

nitzschia spp., the dominant species included Chaetoceros sp., Ceratium sp., Leptocylindrus danicus. 

Table 3 Pseudo-nitzschia blooms of undetermined species in China’s coastal areas. 

Date Location 

Region 

code* 

Area 

(km2) Major components 

June 12, 2000 Shenzhen Bay 

South China Sea 

CN-09 1.4  Chaetoceros sp., 

 Pseudo-nitzschia sp., 

 Ceratium sp. 

Sep. 16–20, 2001 Shenzhen Baguang 

South China Sea 

CN-09 2  Leptocylindrus danicus, 

 Rhizosolenia fragilissima,  

 Pseudo-nitzschia sp. 

July 30–31, 2008 Shenzhen Baguang 

South China Sea 

CN-09 5  Pseudo-nitzschia sp.,  

 Chaetoceros sp. 

* Region code locations are shown in the Harmful Algae Event Database (HAEDAT) website, 

http://haedat.iode.org/browseGrids.php?countryID=7&mapOnly=1 

 

Research on Pseudo-nitzschia in China 

Morphology and taxonomy 

The earliest research on the genus Pseudo-nitzschia in China was in 1965, when two species, P. pungens 

and P. delicatissima, were observed by microscope, but classified as the genus Nitzschia (Chin et al., 1965). 

Since then, 19 species of Pseudo-nitzschia have been identified and their distribution has been monitored 

throughout Chinese coastal waters as shown in Table 4. 

Ten Pseudo-nitzschia species were recently recorded in China and two P. sinica and P. micropora are new 

species that previously have not been observed anywhere in the world. In addition, two new records were 

described using morphological characteristics as well as a molecular phylogenetic tree based on sequences 

of the internal transcribed spacer region (ITS1-5.8S-ITS2) of P. galaxiae Lundholm & Moestrup and P. 

micropora Priisholm, Moestrup & Lundholm (Xu and Li, 2015). All strains of these two new species 

showed no DA content using high performance liquid chromatography (HPLC). 
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Table 4 Pseudo-nitzschia species recently identified in China’s coastal areas. 

 P. americana (Hasle) Fryxell 

 P. australis Frenguelli 

 P. brasiliana Lundholm Hasle & Frywell (new record) 

 P. caciantha Lundholm, Moestrup & Hasle (new record) 

 P. calliantha Lundholm, Moestrup & Hasle 

 P. cuspidata (Hasle) Lundholm, Moestrup & Hasle 

 P. delicatissima (Cleve) Heiden 

 P. galaxiae Lundholm & Moestrup (new record) 

 P. cf. lineola (Cleve) Hasle (new record) 

 P. mannii Amato & Montresor (new record) 

 P. micropora Priisholm, Moestrup & Lundholm (new record, new species) 

 P. multiseries (Hasle) Hasle 

 P. multistriata (Takano) Takano (new record) 

 P. pseudodelicatissima (Hasle) Lundholm, Hasle & Moestrup 

 P. pungens (Grunow & Cleve) Hasle 

 P. sinica Qi & Wang (new record, new species) 

 P. subfraudulenta (Hasle) Hasle (new record) 

 P. subpacifica (Hasle) Hasle (new record) 

 P. turgidula (Hustedt) Hasle 

 

Pseudo-nitzschia pungens is a common, cosmopolitan species confined to coastal waters and has been 

sometimes reported to produce DA, the causative agent of amnesic shellfish poisoning (ASP). Zhang et al. 

(1994) studied the subspecific taxonomy of Nitzschia pungens (Grunow) from the Yellow Sea. The samples 

were identified as Nitzschia pungens (Grunow f. pungens) but not N. pungens (Grunow f. multiseries). 

Pseudo-nitzschia pungens is ubiquitous in China, and forms blooms along the Chinese coast from north to 

south, in Dalian Bay, Jiaozhou Bay, Changjiang River Estuary, Xiamen Bay and Daya Bay. It commonly 

occurs in all seasons, but especially in the summer and fall (Lü and Qi, 1993; Zou et al., 1993; Qi et al., 

1994). Li (2010) did more research on the morphology and taxonomy of the Pseudo-nitzschia genus in 

Chinese coastal waters and found that it formed two additional complexes: the P. pseudodelicatissima and 

P. americana complexes. 

Physiology and growth kinetics  

Chen et al. (2002) studied the dynamics of Pseudo-nitzschia spp. and associated environmental factors in 

Daya Bay which is a semi-closed gulf in the South China Sea that has been developed as a mariculture base 

in Guangdong Province. Pseudo-nitzschia spp. are a common dominant species in this area. Seasonal 

changes of Pseudo-nitzschia spp. as well as the influences of environmental factors (especially nutrients) 

on the population dynamics were analyzed from July 1997 to June 1998. Chen et al. (2002) observed the 

genus in the bay throughout the year, and noted that cell concentrations were highest in spring and autumn.  
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Peak densities of Pseudo-nitzschia spp. were observed at temperatures ranging from 25.0–30.0℃ and 

salinity from 28.4–31.3‰. Dissolved inorganic nitrogen (DIN) and silicate were abundant in the bay while 

dissolved inorganic phosphate (DIP) appeared to be the limiting factor. The ratios of DIN, DIP, and Si are 

important for the growth of Pseudo-nitzschia and the optimal ranges of N:P, Si:P, Si:N are 6.21–32.98, 

59.67–119.71, 3.36–17.89, respectively. 

Lü et al. (2006) analyzed the effects of nitrogen, phosphorus and N:P ratios on the growth of P. pungens 

collected and isolated from Daya Bay. Results showed that P. pungens is a nutrient-dependent species, and 

its growth is stimulated by high levels of nitrogen and phosphorus. Therefore, the N:P ratio is another 

important factor to affect the population growth. The optimal N:P ratio for the growth of P. pungens ranges 

from 10–3. 

Qin et al. (2014) compared physiological characteristics of alkaline phosphatase (AP) in P. pungens and 

Aureococcus anophagefferens and showed that AP of P. pungens and A. anophagefferens was inducible 

and that the expression of AP activity was co-regulated by DIP and particulate phosphorus. The response of 

P. pungens to AP activity was more sensitive than that of A. anophagefferens. 

Ecology and Pseudo-nitzschia blooms 

Pseudo-nitzschia spp. can succeed at low temperatures due to their ability to obtain enough nutrients for 

growth, compared to dinoflagellates.  Population densities and relationships between Pseudo-nitzschia, 

phytoplankton and zooplankton were investigated daily from April to May, 2000, in Daya Bay (Chen et 

al., 2005). At the beginning of survey, species composition and densities of the planktonic community were 

low followed by the rapidly increasing growth of Pseudo-nitzschia with a maximum density of 2.93 × 106 

cells L–1. Both P. pseudodelicatissima and P. pungens bloomed, and other diatoms and dinoflagellates were 

also enriched during this bloom. The authors determined that Pseudo-nitzschia was the most important 

component of the spring diatom bloom due to its competitive advantage over other species. The effect of 

zooplankton (especially copepods) top-down control on Pseudo-nitzschia was not significant because of 

reduced grazing pressure. This lack of grazing on Pseudo-nitzschia contributed to its success in the study 

area. 
 

Toxins and toxicology 

Pseudo-nitzschia species, including P. pungens, P. cuspidata, P. multistriata, P. brasiliana, P. galaxiae 

and P. micropora, isolated from the coast of China, showed either no measurable or only a trace of DA 

using HPLC; Li et al., 2002). Recently, traces of DA have been measured in some shellfish samples but 

not in seawater or freshwater (Table 5; Chen et al., 2001).  In May 2001, five species of shellfish samples 

normally collected and consumed in the Dalian area (the Yellow Sea) were analyzed by capillary 

electrophoresis with UV detection and only one species (Chlamys farreri) was found to contain DA 

(Table 6). 
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Table 5 Analytical results of DA in shellfish using HPLC analysis (Chen et al., 2001). 

Sample 

Sample weight  

(g) 

DA  

(μg/g) 

Shrimp  10.5  0.50 

Scapharca subcrenata #1 (blood clam)  9.0 Not detected 

Scapharca subcrenata #2  8.0 Not detected 

Scapharca subcrenata #3  10.0  0.57 

Conch Shell #1  11.5  0.80 

Conch Shell #2  9.5 Not detected 

Scapharca subcrenata #4  16.0 Not detected 

Panopea abrupta (geoduck)  11.6  8.14 

Pteria margaritifera (clam)  14.2  4.04 

Paphia undulate (clam)  9.7 Not detected 

Meretrix meretrix L. (clam)  14.4  4.16 

Ruditapes philippinarum (clam)  12.6  0.43 

Cyclina sinensis (clam)  9.7 Not detected 

Conch (n = 3)  10.3 Not detected 

 

Table 6 Analysis of DA in shellfish using capillary electrophoresis with UV detection (Li et al., 2002). 

Sample 

DA 

 (μg/g) 

Ruditapes philippinarum (clam) Not detected 

Mytilus edulis (mussel) Not detected 

Oyster Not detected 

Callista chione (clam) Not detected 

Chlamys farreri (scallop) 5.2 

MUS-1 reference material 32.6 
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Summary 

1)  Sixteen cases of Pseudo-nitzschia blooms in China have been recorded from 1987 to the present, often 

co-occurring with other species. 

2)  The cumulative area in which these past blooms have been observed is 1,280 km2, and no death of 

marine life, or large economic loss, due to Pseudo-nitzschia has occurred. 

3)  Two or more Pseudo-nitzschia sp. may cause blooms in China, including P. delicatissima, P. pungens, 

as well as other newly recorded Pseudo-nitzschia species. 

4)  Some species of Pseudo-nitzschia in China may produce trace DA (but less than the regulatory limit 

of 20 µg g–1). 

5)  Due to the potential threat of DA production among Pseudo-nitzschia species, it is suggested that 

routine monitoring of these blooms should be intensified to protect seafood safety. 
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5 Temporal changes and toxicity of Pseudo-nitzschia species 
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Since the first occurrence of Pseudo-nitzschia blooms in Masan Bay, Korea, in 1975, these blooms have 

been observed mostly in semi-closed bays (such as Jinhae, Deukryang). Since 1990, these blooms have 

been observed in coastal waters (e.g., near Jinhae, coastal ports, mouth of Nak-dong River; Lee, 1994). 

Despite observations of recurrent Pseudo-nitzschia blooms, amnesic shellfish poisoning (ASP) has not yet 

been reported in Korea. Koh and Kwon (2002) reported no detectable domoic acid (DA) in one gastropod 

species and 11 bivalve species which were sampled from May to December in 1999. Nationwide shellfish 

poisoning monitoring performed by the National Institute of Fisheries Science (NIFS) also showed that DA 

was rarely detected in Korean waters. DA has not been detected in any shellfish sample since 2009 

(Table 1). In Korea, Cochlodinium polykrikoides and some other dinoflagellates are major research subjects 

as these harmful dinoflagellates are the primary causes of massive fish mortality. Because Pseudo-nitzschia 

bloom events and bloom periods have gradually decreased since the 1980s (Figs. 1 and 2), few studies have 

been conducted about boom dynamics and DA production by Pseudo-nitzschia species in Korea.  

Table 1  Concentrations of domoic acid (DA; µg g–1) according to a nationwide shellfish toxin monitoring program 

conducted by the National Institute of Fisheries Science (NIFS) from 2003–2015 in Korean waters. 

 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

Month Jan-

May 

Feb-

Apr 

Jan Aug Mar Mar ND ND ND ND ND ND ND 

Jan-

May 

Jun Feb Aug Apr Mar        

Jan-

May 

Jun Feb Aug Aug Mar        

DA 0.3–0.5 0.2–0.9 1.46–

2.85 

0.73–

0.86 

0.3–

0.44 

1.07–

2.17 

– – – – – – – 

ND, not detected by high performance liquid chromatography (HPLC) 
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Fig. 1 Map showing the sampling stations in the study area. 

 

 

 

Fig. 2  Cell densities of Pseudo-nitzschia spp. in southeast coastal waters, Korea, from 1987–2014. 
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Lee (1994) compared the morphological characteristics between Pseudo-nitzschia pungens f. multiseries 

and P. pungens f. pungens sampled from 1974 to 1994 in the waters of southern Korea. Lee and Baik (1997) 

isolated and cultured P. multiseries from the waters of southern Korea, and detected 1.03 pg cell–1 DA in 

stationary phase cultures. Pseudo-nitzschia multiseries was dominant from April to May at a temperature 

range of 14.8°–19°C. 

Park et al. (2009) reported that 13 Pseudo-nitzschia species (P. americana, P. brasiliana, P. caciantha, 

P. calliantha, P. cuspidata, P. delicatissima, P. micropora, P. multiseries, P. multistriata, 

P. pseudodelicatissima, P. pungens, P. subfraudulenta and P. subpacifica) appeared in southeastern coastal 

waters in 2008 (Fig. 3). Only four species appeared in May, 12 species in September, and 5 species in 

November (Table 2).  

Lim (2010) found that Pseudo-nitzschia cell density has fluctuated since 1987, with a possible decrease 

(Fig. 2). Pseudo-nitzschia blooms were highly correlated with rainfall. Cell density increased when silicate 

concentrations were high rather than when nitrogen and phosphorus concentrations were high. High cell 

densities were frequently found in inner sea areas where an elevated inflow of fresh water from land 

occurred. 

 

Fig. 3  Pseudo-nitzschia species in southeastern coastal waters, Korea, in 2008. ETC indicates the species that do not 

belong to any group. 
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Table 2  Pseudo-nitzschia species detected in the coastal waters of Tongyeong, Korea. 

 2008 

Taxon May Jun Jul Aug Sep Oct Nov 

Pseudo-nitzschia americana + + + + + + + 

P. brasiliana    + +   

P. caciantha   + + + + + 

P. calliantha  + +  +   

P. cuspidata + + + + +   

P. delicatissima + + + + + +  

P. micropora  + + + +   

P. multiseris    + + + + 

P. multstriata   + + + + + 

P. pseudodelicatissima   +  +   

P. pungens + +  + + + + 

P. subpacifica    + +   

P. subfraudulenta     + +  

Total number of species  4 6 8 10 13 7 5 

 

Table 3 Field observation and cultures of Pseudo-nitzschia species in 2008 and 2009 (Lim, 2010). 

Field strain Culture strain 

Pseudo-nitzschia americana – 

P. brasiliana  P. brasiliana 

P. caciantha  P. caciantha 

P. calliantha – 

P. cuspidata – 

P. delicatissima  P. delicatissima 

P. fraudulenta – 

P. micropora – 

P. multiseris  P. multiseris 

P. multstriata  P. multstriata 

P. pseudodelicatissima – 

P. pungens  P. pungens 

P. subpacifica – 

P. subfraudulenta – 

–  P. mannii 

–  P. americana 

14 species  8 species 
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Lim (2010) reported that 14 species of Pseudo-nitzschia were observed in the southern East Sea and 

8 species were cultured in 2008 and 2009 (Table 3). The analysis of DA in seawater samples and cultures 

showed that 3 species of Pseudo-nitzschia, P. calliantha, P. multiseries and P. multistriata, produced DA. 

The concentrations of DA varied significantly throughout the year. The concentrations of DA were higher 

in eutrophic inner sea areas than in shellfish farm areas, and varied among Pseudo-nitzschia species.   
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6 Pseudo-nitzschia bloom events in the Russian waters of the 
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Introduction 

Pseudo-nitzschia monitoring in the northwestern Japan/East Sea has been conducted for over two decades 

by the Center for Monitoring of Harmful Algal Blooms and Biotoxins, the National Scientific Center of 

Marine Biology.  Phytoplankton species diversity and abundance have been studied since 1992 and domoic 

acid (DA) concentrations in diatoms and bivalve samples have been quantified since 2007.  

Pseudo-nitzschia is one of the most widespread and abundant microalgae groups capable of toxin 

production in the Russian waters of the Japan/East Sea where nine Pseudo-nitzschia species have been 

identified by light and electron microscopy (Stonik and Orlova, 2012). At least seven of these species 

(P. calliantha, P. delicatissima, P. fraudulenta, P. multiseries, P. multistriata, P. pungens, P. seriata) are 

known to produce DA in other parts of the world.  

Pseudo-nitzschia bloom events 

Blooms of P. calliantha, P. multiseries, P. multistriata and P. pungens have been observed in the Russian 

coastal waters of the western North Pacific in the summer and autumn with abundances exceeding 1 million 

cells L–1 and constituting 75–98% of the total phytoplankton density (Stonik et al., 2011a). The most 

intensive Pseudo-nitzschia bloom events in Russian waters of the Japan/East Sea were registered from 

1992–1997 (Stonik et al., 2001).  On a decadal timescale, there has been a sharp decrease in P. multiseries 

abundance (from 11.0 to 1.4 million cells L–1) from 1992–2002, and a shift from P. multiseries to P. 

calliantha and P. multistriata from 2002–2012 (Table 1).  For example, one of the potentially toxic diatom 

blooms of the genus Pseudo-nitzschia was observed in October–November 2005 in the northeastern part of 

Amur Bay in the coastal waters of Vladivostok  with salinity ranging from 31–33.5‰ and water temperature 

from 6–12°С. The peak of Pseudo-nitzschia multistriata/сalliantha cell density (0.8·106 cells L–1), recorded 

after heavy rains, was mainly caused by a massive bloom of P. multistriata (67% of total density) and P. 

calliantha (9%). A negative correlation was found between Pseudo-nitzschia spp. cell density and water 

salinity and NH4 concentration; a positive correlation was observed between diatom population density and 

water temperature (Stonik et al., 2012). 
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Table 1  The most intensive Pseudo-nitzschia bloom events in the northwestern Japan/East Sea from 1992–2012. 

Species Date 

Maximum 

concentration 

(cells L–1) Condition 

P. multiseries June 1992 11·106 After heavy rainfalls at SST of 14.2–

16.1°С  June 1993 1·106 

 September 2002 1.4·106 

    

P. calliantha November 1997 2.7·106 SST of 5–6°С and salinity of 34.5‰ 

    

P. calliantha/fraudulenta 

 

October–November 2002 3.6·105 SST of 6–16°С and salinity of 28.8–

33.5‰ 

    

P. multistriata/calliantha October–November 2005 0.8·106 SST temperature of 6–12°С and salinity 

of 31–33.5‰. The bloom event was 

found after heavy rains. There was a 

negative correlation between the diatom 

abundance, water salinity, and 

ammonium concentrations. There was a 

positive correlation between diatom 

abundance and water temperature. 

    

P. multistriata September 2012 2.5·105 SST of 17.8–18°С and salinity of 26.8–

28 ‰. 

    

P. calliantha November 2012 1.4·106 SST of 5–6°С 

After this bloom, samples of phytoplankton were collected on a routine basis from 2012–2015 in the 

Russian waters of the Japan/East Sea. The total abundance of Pseudo-nitzschia species varied from 3·102 

to 1.4·106 cells L–1. The highest concentrations of toxigenic Pseudo-nitzschia species in Amur and Ussuri 

bays reached 0.2–1.4·106 cells L–1, well above the European Union and Canadian threshold guidance level 

(104–105 cells L–1 in Andersen, 1996). The density of toxic species exceeded the limit of 1·105 cells L–1 on 

four occasions (2.5·105 cells L–1 in September 2012 in northern Amur Bay, dominated by P. multistriata; 

1.2–1.4·106 cells L–1 in November 2012 in Ussuri Bay, dominated by P. calliantha; 3·105 cells L–1 in 

November 2013 in Ussuri Bay, dominated by P. calliantha; 1.7·105 cells L–1 in October 2015 in Usauri 

Bay, dominated by P. multistriata, Stonik, unpubl. data). 

Regular fall blooms of toxigenic P. calliantha and P. multistriata were recorded in Ussuri Bay, coinciding 

with a period when local wind-driven upwelling occurs (V.B. Lobanov, V.I. Il’ichev Pacific Oceanological 

Institute, Far Eastern Branch of the Russian Academy of Sciences, pers. comm.).  
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DA measurements in Pseudo-nitzschia laboratory cultures and bivalve 

samples 

In the summer and fall prior to 2002, Pseudo-nitzschia multiseries bloomed in Peter the Great Bay, with 

cell abundances exceeding 106 cells L–1. Total DA was measured using high performance liquid 

chromatography (HPLC) with a fluorenylmethoxycarbonyl derivative (Pocklington et al., 1990) in “whole-

culture” samples (cells plus medium) isolated during a P. multiseries bloom in 2002. Domoic acid was 

found in stationary-phase (days 20–35) cultures of P. multiseries isolated from Peter the Great Bay during 

fall 2002 when concentrations varied from 180–5390 ng ml–1, equivalent to 2 to 21 pg cell–1, which is in 

the range reported for other isolates of P. multiseries (Orlova et al., 2008). The Russian isolate showed 

greater ability to produce DA over time in culture. The change in toxicity over time could be related to 

changes in the bacterial composition in the diatom culture. A gamma proteobacterium (tentatively identified 

as Alteromonas macleodii) was isolated from P. multiseries strain PM-02, and has been shown to 

significantly enhance the DA concentration of an axenic culture of another strain of P. multiseries (S.S. 

Bates, I. Kaczmarska, C. Leger, J. Ehrman and D.H. Green, unpublished data).  

Concentrations of DA (up to 0.5 pg cell–1), determined using the “ASP direct ELISA” kit (Biosense 

Laboratories AS, Norway, AOAC official method 2006.02) were measured in cultures of P. calliantha, 

P. delicatissima, P. multistriata and P. pungens (Stonik et al., 2011b; Stonik, unpublished data). The 

monitoring of DA in shellfish collected from Peter the Great Bay during 2009–2013 showed that 

concentrations in tissues of the bivalves Mytilus trossulus, Crenomytilus grayanus and Mizuhopecten 

yessoensis ranged from 0.01–0.3 mg kg–1, well below the permissible regulatory limit of 20 mg kg–1 (Stonik 

and Orlova, 2012). 

In summary, to date there have been no economic or social impacts connected with toxigenic Pseudo-

nitzschia blooms in Russian waters. However, the high concentrations of toxigenic Pseudo-nitzschia 

species able to produce DA suggest a potential threat of future DA contamination in shellfish in the 

northwestern Japan/East Sea.  
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Coastal managers became keenly aware of the possibility of amnesic shellfish poisoning (ASP) in the 

northeastern Pacific region after sea lions and sea birds in Monterey Bay, California, showed symptoms of 

this poisoning (also called domoic acid poisoning) after ingesting sardines and anchovies filled with cells 

of Pseudo-nitzschia australis in 1991 (Scholin et al., 2000). Soon after this event, toxigenic Pseudo-

nitzschia blooms were identified as a problem in Washington State after the first closure of the razor clam 

fishery was announced in the same year. Harmful DA was identified after a shellfish manager from the 

Washington State Department of Health (WDOH), collected razor clams at Long Beach, Washington, for 

routine paralytic shellfish toxin testing.  When the shellfish homogenate was injected into a mouse at the 

lab, unusual behavior not characteristic of paralytic shellfish poisoning was noticed, including scratching 

behind the ear, a symptom of domoic acid (DA) poisoning. This observation was communicated to 

Canadian scientists, who first described DA in 1987, as a new toxin produced by Pseudo-nitzschia.  The 

shellfish sample was shipped to them for analysis, resulting in the confirmation of harmful levels of DA in 

Washington State shellfish for the first time in 1991. 

Since that year, DA closures have affected the commercial, recreational and tribal subsistence harvest of 

shellfish, including blue mussels, razor clams and Dungeness crabs in Oregon, Washington State, and 

British Columbia (BC), Canada, although the intensity and frequency of these closures vary spatially.  

Shellfish monitoring for public health safety is conducted on a regular basis by the WDOH, the Oregon 

Department of Agriculture, and the Canadian Shellfish Sanitation Program.  The analysis of razor clam 

tissue for DA content (Fig. 1) at two representative Washington State coastal beaches (Kalaloch and Long 

Beach; Fig. 2) from 1991–2017 illustrates the frequency of razor clam closure events.  Although toxic razor 

clams are frequently present at the central (Kalaloch Beach) and southern (Long Beach) sites, the level of 

toxicity varies, suggesting that physical processes impact bloom access to the coast from different source 

regions (described below).  It is interesting to note that during 2007–2014, no DA closures occurred on the 

Washington coast, but this non-bloom period was followed by the west coastwide Pseudo-nitzschia bloom 

in 2015 that had the highest economic impact (~$100 million economic loss to the Dungeness crab harvest 

alone; Lowther and Liddel, 2016) compared to previous toxic Pseudo-nitzschia events (McCabe et al., 

2016). 
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Fig. 1  Historical DA in razor clams at Kalaloch and Long Beach, WA (locations shown in Fig. 2) from 1991–2017.  

The regulatory action level of 20 ppm (or g g–1) is shown as a black horizontal line. 

 

Fig. 2 Core phytoplankton sampling sites on the Washington coast monitored by the Olympic Region Harmful Algal 

Bloom (ORHAB) partnership. 
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In British Columbia, DA levels have generally been lower than in the U.S. northeastern Pacific Ocean, in 

part due to the general lack of razor clams on the outer coast of BC. The first significant amount of DA 

detected in shellfish was in razor clams from Haida Gwaii in April 1992, and Dungeness crab viscera in 

western Vancouver Island inlets in August of the same year. Figure 3 shows the maximum monthly DA 

(Canadian Food Inspection Agency data) in samples from four separate areas on the BC coast: Haida Gwaii, 

West Coast Vancouver Island (WCVI), East Coast Vancouver Island (ECVI), and the Central Coast (Fig. 

4). DA levels in 1992 were the highest seen in B.C. to date; since 1995 shellfish from Haida Gwaii sites, 

primarily razor clams, are most commonly found to be contaminated although there have been distinct 

periods (spring 2002–winter 2004, spring 2008–spring 2012) where no DA was detected. In spring 2015, 

unusually high levels of DA were seen in samples from WCVI, and in November of that year, DA in mussel 

samples from ECVI were measured for the first time above the regulatory guidance level (50.4 µg g–1, at 

Patricia Bay in Saanich Inlet). 

 

Fig. 3 Domoic acid (DA) in shellfish samples in British Columbia, Canada, from 1992–2016; maximum values, 

pooled by area and month. Data from Canadian Food Inspection Agency. 

 

Fig. 4  DA monitoring areas in British Columbia, Canada. 
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Phytoplankton monitoring has been established to provide an early warning of harmful algal blooms 

(HABs) in the northeastern Pacific Ocean including the Monitoring of Oregon’s Coast for Harmful Algae 

(MOCHA), the Olympic Region HAB program (ORHAB, Washington State – for details on the ORHAB 

program methods, see Appendix 3 and www.orhab.org), the Harmful Algae Monitoring Program (HAMP, 

British Columbia, Canada), and the Southeast Alaska Tribal Toxins network (SEATT; www.seator.org).  

Phytoplankton monitoring is not required as part of U.S. regulatory testing, but has been established through 

funding programs such as NOAA’s Monitoring and Event Response to HABs (MERHAB), through a small 

fee paid by shellfish farmers, and through a surcharge for shellfish license fees.  However, it has been 

difficult to maintain these important phytoplankton monitoring programs without consistent funding. 

Phytoplankton monitoring has helped scientists to establish the annual seasonality of Pseudo-nitzschia 

blooms, the species and their abundance associated with the most toxic events, and the potential source 

regions for these blooms.  In particular, the ORHAB program has a dataset of phytoplankton abundance 

established in 2000, allowing for the analysis of annual patterns in Pseudo-nitzschia.  The beaches at which 

phytoplankton samples are collected at least weekly by the Washington Department of Fish and Wildlife, 

the University of Washington’s Olympic Natural Resource Center, the Quinault Indian Nation, the Quileute 

Tribe and the Makah Tribe are shown in Figure 2.  In general, Pseudo-nitzschia blooms occur in the spring 

and late summer, and are now known to originate from the source regions, Heceta Bank and the Juan de 

Fuca Eddy.  The Pseudo-nitzschia species that have been present during the major toxic events on the 

Washington coast since 1998, their total maximum abundance, and the clamming days lost due to these 

events, are shown in Table 1.  Although several species have been observed, including P. heimii, P. 

pungens, P. delicatissima, P. fraudulenta, P. seriata, P. lineola, and P. multiseries, the two Pseudo-

nitzschia species responsible for the major razor clam closures in Washington and Oregon are P. cf. 

pseudodelicatissima (recently identified as P. cuspidata by scanning (SEM) or transmission (TEM) electron 

microscopy; Lundholm et al., 2003) and P. australis.  Fewer Pseudo-nitzschia species have been identified 

in BC waters. Forbes and Denman (1991) reviewed the distribution of P. pungens and P. multiseries (as 

Nitzschia pungens f. pungens, and N. pungens f. multiseries) in samples taken from 1980–1988. Samples 

were analyzed with a light microscope, so differentiation between the two forms was not possible; only one 

sample was examined using SEM, and in this sample P. f. pungens outnumbered f. multiseries by 25-fold. 

These researchers reported P. seriata from WCVI sites. P. australis and P. delicatissima have also been 

reported from Barkley Sound (WCVI; Taylor and Haigh, 1996), with P. australis more common in early 

summer, and P. delicatissima, with P. pungens, in late summer and autumn. In 2015, Pseudo-nitzschia 

species seen in WCVI sites taking part in the Harmful Algae Monitoring Program (HAMP, see 

http://www.microthalassia.ca/hamp/) were P. australis, P. fraudulenta, P. pungens and P. cf. delicatissima. 
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Table 1 Description of historical DA closure events in Washington State (1998–2017). 

Event1 Closure 

Max. PN2 

(cells L–1) 

Dominant 

PN species 

Other PN 

species 

Max DA 

in clams 

(ppm) 

Action 

(closure 

period) 

Clamming 

days lost 

% days 

lost 

Summer 

1998 

coastwide 17 × 106 cf. psdeli3 heimii, pun  300 pre-season 

cancellation  

 116  64 

Spring 

2001 

southern 

beaches 

0.7 × 105 aus pun  17 pre-season 

cancellation  

 1  7 

Summer 

2002 

coastwide 4.3 × 106 aus heimi, pun, 

deli 

 99 pre-season 

cancellation  

 268  85 

Summer 

2003 

Kalaloch 

Beach 

2.4 × 106 cf. psdeli cusp, 

fraud, pun, 

aus 

 25 season 

postponement, 

cancellation  

 23  16 

Summer 

2004 

Kalaloch 

Beach 

4.8 × 106 cf. psdeli fraud, 

heimii, 

cusp, deli, 

pun 

 49 season 

postponement,  

cancellation  

 147  28 

Spring 

2005 

Long 

Beach 

2.0 × 105 aus fraud  20 season 

postponement,  

cancellation 

 5  8 

Summer 

2006 

Kalaloch 

Beach 

9.3 × 106 cf. psdeli –  38 no action, 

outside razor 

clam season 

 0  0 

2007–

2014 

No coastal razor clam toxicity  

Spring 

2015 

coastwide 2.2 × 106 aus psdeli, 

heimii, 

multi, 

lineola, 

fraud, pun 

 169 in-season 

closure 

not 

scheduled 

 100 

Fall 

2016 

southern 

beaches  

2.7 × 106 cusp (Sep), 

aus (Oct) 

pun, multi, 

deli 

 29 season 

postponement, 

in-season 

closure 

156  69 

Spring 

2017 

southern 

beaches 

7.9 × 104 aus pun 44 season 

postponement, 

in-season 

closure 

46  41 

1 Season when event began. 
2 PN = Pseudo-nitzschia.  Indicates maximum number of all Pseudo-nitzschia species.  
3 Species abbreviations: psdeli = P. cf. pseudodelicassima; aus = P. australis; pun = P. pungens; heimii = P. heimii; 

deli = P. delicatissima; lineola = P. lineola; cusp = P. cuspidata; fraud = P. fraudulenta; seriata = P. seriata 
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A series of research cruises since 1997 has shown that toxic Pseudo-nitzschia blooms affecting the U.S. 

Pacific Northwest originate from source regions in the northeastern Pacific, including Point 

Conception/Santa Barbara Channel (California), Monterey Bay (California), Heceta Bank (Oregon), and 

the Juan de Fuca Eddy (Washington/BC) (Fig. 5).  These “hotspot” sites form during late spring through 

late summer and provide nutrients from upwelling and physical retention that enables phytoplankton growth 

and maintenance.  Often, these features are visible by satellite as regions of high chlorophyll and cooler 

upwelled water.  It has been shown that average cumulative upwelling (i.e., periods of moderate upwelling 

followed by moderate storms) was observed in summers when the Juan de Fuca Eddy was most retentive, 

and DA closures in coastal Washington occurred (compare Fig. 6 to Table 1).  In 1991, 1998, 2002, 2003, 

2004, 2006 (through late June) and 2016 the cumulative upwelling index was “average” compared to past 

years, shown in light gray (Fig. 6). In contrast, the 2015 springtime bloom was delivered to the coast by the 

anomalously warm nutrient-depleted waters (nicknamed “the Blob”; see description below), and a higher 

than average cumulative upwelling index was observed (Fig. 6, dotted purple line). 

 

Fig. 5 Particulate DA in the northeastern Pacific Ocean in the summer 1998.  Maximum concentrations of DA and 

toxic species are indicated to the right of each toxic hotspot (redrawn from Trainer et al., 2001; Hickey and Banas, 

2003). 
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Fig. 6  Daily upwelling indices at 48°N, 125°W for 1991–2016 from May–September obtained from NOAA Pacific 

Fisheries Environmental Lab (https://www.pfeg.noaa.gov/products/PFEL/modeled/indices/upwelling/upwelling.html).  

Cumulative upwelling indices were derived by calculating a running total of the data for each year starting on May 1 

and ending on September 30.  Colored lines represent years where DA events occurred on the coast of Washington 

State and gray lines represent years where there were no DA events. 

The successful transport of Pseudo-nitzschia from the hotspot sites to beaches is influenced by the position 

and intensity of the Columbia River, the geographical boundary between Washington and Oregon, with the 

greatest discharge of any North American river entering the Pacific.  During the summer, or good-weather 

periods, the predominant direction of the Columbia River freshwater plume is southward and during the 

winter, or storm periods, the primary direction is northward (Fig. 7).  However, it can take days or even 

weeks for the Columbia River to respond to changing weather and at times the plume is bi-directional.  This 

freshwater gradient often acts as a barrier to Pseudo-nitzschia transport to the coast, sometimes resulting in 

higher concentrations of DA in shellfish at northern Washington State beaches (see razor clam DA in 1998 

at Kalaloch Beach compared to Long Beach, Fig. 1).  However, at times, the plume can act as a conduit for 

Pseudo-nitzschia cell transport from Heceta Bank to the Washington coast (Hickey et al., 2013), resulting 

in toxic clams at Long Beach, but not Kalaloch Beach (Table 1; see spring 2017 closure at southern beaches 

only).   
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Fig. 7 Environmental conditions in the U.S. Pacific Northwest that transport Pseudo-nitzschia cells (a) southward 

from the Juan de Fuca Eddy in summer/fall, or during good weather conditions, (b) during weak storms, or 

downwelling-favorable wind reversals, and (c) in the late winter/spring during strong storms. Surface currents are 

shown with arrows, clamming beaches in red, and green shading indicates freshwater from the Columbia River and 

Juan de Fuca Strait. The Columbia River plume can act as a conduit or barrier. The offshore retentive sites, Juan de 

Fuca Eddy and Heceta Bank, where harmful algal blooms typically initiate, are shown as yellow ovals (redrawn from 

Fig. 9 in Hickey et al., 2013). 

Data collected during five Ecology and Oceanography of Harmful Algal Blooms–Pacific Northwest 

(ECOHAB PNW) cruises have allowed scientists to determine the environmental factors correlated with 

toxic Pseudo-nitzschia blooms. These cruises confirmed that P. cf. pseudodelicatissima/cuspidata and 

P. australis are the primary species responsible for toxic events in Washington State while P. multiseries 

is also present at lower abundance (Table 2).  Environmental parameters consistently correlated with 

Pseudo-nitzschia abundance and particulate DA (pDA) in both the whole cruise grid and the Juan de Fuca 

Eddy region were Chl-a, and Si:P ratios  (Table 3).  However, it is important to remember that these factors 

were coincident with Pseudo-nitzschia and pDA measurements and were not necessarily factors that 

promoted the toxic blooms. In addition, the presence of pDA in the Juan de Fuca Eddy region appears to 

be elevated in regions of reduced iron (Trainer et al., 2009); this finding is supported by culture studies 

demonstrating linkage of DA with trace metal availability (Wells et al., 2005).  

  

(a) (c) (b) 
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Table 2 Pseudo-nitzschia species, maximum total abundance, and toxicity observed in selected surface samples 

collected during Ecology and Oceanography of Harmful Algal Blooms–Pacific Northwest (ECOHAB PNW) cruises. 

Date Eddy or coast 

Pseudo-nitzschia 

(cells L–1) 

Pseudo-nitzschia species  

(%) 

pDA 

(nM) 

June 4, 2003  coast  21,000 fraud (65)1, pun (25), psdeli (5), aus (5); n = 20 1.26 

June 4, 2003  coast  24,000 pun (48), fraud (28), deli (8), aus (16); n =25 1.48 

June 14, 2003  eddy  8,000 pun (60), psdeli/deli (20), aus (17), multi (3); n = 121 0.33 

June 15, 2003  eddy  5,000 pun (58), aus (26), multi (10), psdeli/deli (5); n = 165 0.05 

Sep. 1, 2003  coast  324,000 heimii/fraud (96), aus (1), psdeli/deli (3); n = 290 0.01 

Sep. 4, 2003  eddy  278,000 aus (97), psdeli/deli (2), heimii (1); n = 342 2.54 

Sep. 8, 2003  eddy  69,000 psdeli/deli (57), aus (43); n = 21 0.41 

Sep. 11, 2004  coast  250,000 psdeli/deli (99), fraud (1), multi; n = 269 0.21 

Sep. 10, 2004 tendril2  67,000 psdeli/deli (98), fraud (2); n = 298 1.02 

Sep. 13, 2004  eddy  1,467,000 cusp (96)3, fraud (2), pun (1), aus (1); n = 344 12.65 

Sep. 14, 2004  eddy  1,900,000 cusp (99), aus, fraud; n = 402 16.42 

Sep. 14, 2004  eddy  1,040,000 cusp (99), multi, aus, fraud; n = 233   7.65 

Sep. 15, 2004  eddy  3,280,000 cusp (98), deli (1), pun (1); n = 177 20.25 

July 19, 2005  coast  12,000 deli (58), pun (24), heimii (12), fraud (6); n = 17 0 

July 22, 2005  eddy  5,333 multi (47), aus/fraud (27), psdeli/deli (11), pun (1); n = 73 0.09 

Sep. 14, 2005  coast  299,231 cusp (99), heimii (1); n = 300 1.08 

Sep. 15, 2005  coast  1,126,923 psdeli (92), heimii (7), fraud (1); n = 132 1.21 

Sep. 15, 2005  coast  43,846 cusp (90), heimii (10); n = 78 1.17 

Sep. 20, 2005  eddy  36,000 psdeli (98), heimii (2); n = 212 2.21 

Sep. 19, 2005  eddy  1,429 pun (34), heimii (28), psdeli (36), multi (2); n = 61 0.19 

Sep. 14, 2006  coast  73,846 psdeli/deli (49), heimii (43), fraud (5), multi (3); n = 139 0.04 

Sep. 15, 2006  coast  388,462 psdeli/deli (83), heimii (15), fraud (3), pun (1); n = 238  0.02 

Sep. 26, 2006  eddy  80,714 psdeli/deli (68), heimii (30), multi (1), lineola; n = 79 0 

Sep. 27, 2006  eddy  50,769 psdeli/deli (65), heimii (35), lineola; n = 47 0.01 

1 Species abbrevations:  P. fraudulenta = fraud, P. pungens = pun, P. cf. pseudodelicatissima = psdeli, P. australis = 

aus, P. multiseries = multi, P. cuspidata = cusp, P. heimii = heimii, P. delicatissima = deli. Percentage of a species in 

each sample is shown in parenthesis.  When no percentage is noted, the species is present at less than 1%.  

2 A tendril is a patch of Pseudo-nitzschia ejected from the Juan de Fuca Eddy. 

3 P. cuspidata was identified using transmission (TEM) and scanning (SEM) electron microscopy of samples collected 

during the September 2004 ECOHAB PNW cruise, and subsequent cruises.  This is a new species resulting from the 

recent separation of P. pseudodelicatissima into three species (Lundholm et al., 2003). Therefore, P. cuspidata is not 

positively identified in samples prior to 2004 and the nomenclature psdeli is used. The species psdeli/deli are grouped 

together when they cannot be distinguished by SEM (modified from Table 2 in Trainer et al., 2009). 
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Table 3 Spearman’s rho (rs) non-parametric correlation analyses for Pseudo-nitzschia (PN) and particulate domoic 

acid (pDA) in Washington State and the Juan de Fuca Eddy region.  

 Offshore Washington State Eddy region 

 Pseudo-nitzschia 

(PN) pDA 

Pseudo-nitzschia 

(PN) pDA 

PN   1.00   0.55323
**   1.00   0.59157

** 

pDA 0.49564
**   1.00   0.49274

**   1.00 

Chl-a   0.52531
** 0.19307

** 0.46272
** 0.20143

* 

Temp. –0.06579 <0.01323   0.03286 –0.16157
* 

Salinity   0.11579
*   0.13323

* –0.10286   0.21157
** 

N –0.08331   0.08188 –0.21157
**   0.2588

* 

P –0.10286   0.03165 –0.21127
*   0.1472 

Si –0.03331   0.09188 –0.14157   0.2688
* 

N:P   0.05283   0.19163
* –0.08124   0.3770

** 

N:Si –0.08331   0.10188 –0.25157
**   0.2588

* 

Si:P   0.34282
**   0.27162

** –0.39124
**   0.4270

** 

* Correlation is significant at the 0.05 level. ** Correlation is significant at the 0.01 level. Correlations with pDA 

(shaded) were calculated only using data at sites where Pseudo-nitzschia > 0. 

Although toxigenic blooms of Pseudo-nitzschia have been demonstrated to initiate at offshore retentive 

sites, the large coastwide bloom that impacted the entire northeastern Pacific region in spring 2015 

challenged that paradigm.  During this event, the Blob, which approached the west coast of North America, 

contained low abundances of Pseudo-nitzschia cells.  Brought to the coast by a series of storms, these cells 

were met by a fresh supply of nutrients from upwelling.  The nutrient-starved Pseudo-nitzschia from the 

Blob were able to quickly assimilate these upwelled nutrients and develop into a massive bloom (McCabe 

et al., 2016).  In fact, attempts to collect zooplankton samples during cruises in April and May 2015 failed 

because large, healthy chains of Pseudo-nitzschia, up to 165 cells per chain, clogged zooplankton nets 

(~200 m mesh size).  The geographical extent of this Pseudo-nitzschia bloom and its impacts on DA 

concentrations in rock crab, Dungeness crab, mussels, razor clams, sardines and anchovies were 

unprecedented.  DA was measured even in the flesh of finfish, although at levels below the regulatory limit.  

Even more disturbing is the documented relationship of DA closure events with warm water anomalies, 

including the Blob and El Niño events (McCabe et al., 2016; McKibben et al., 2017), suggesting that DA 

events may become more prevalent as surface waters continue to warm. 

The economic impacts of DA events can be significant.  A study in coastal Washington by Dyson and 

Huppert (2010) showed that a year-long closure of the recreational razor clam harvest resulted in almost 

$25 million US in lost income, including over 400 jobs, lost wages and lost income for local businesses, 

tourism and recreation.  In contrast, the 2015 coastwide bloom event resulted in a direct economic impact 

to California alone of $48.3 million for Dungeness crab (representing 70% of the total estimated 

commercial value) and $376,000 for rock crab (representing 37% of the total estimated value) from 
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November 2015 through June 20161.  The 2015 closure of the recreational razor clam fishery resulted in at 

least a $40.3 million loss in tourist-related spending in Washington2.  Oregon reported an estimated $5.8 

million loss. The total loss to Dungeness crab harvest alone was estimated at $100 million (Lowther and 

Liddel, 2016).   

However, these estimates do not include economic losses due to public perceptions of unsafe seafood 

resulting from incomplete or insufficient information during this large bloom.  Education of coastal 

communities about HABs, their toxins, the retention and release of toxins from seafood, the nutritional 

value relative to the risk of low-level toxins in this seafood and the impacts of climate change on blooms, 

is more important now than ever.  Efforts to study the large 2015 west coastwide bloom and its impact on 

different communities will provide a resource to shellfish consumers and enable them to adapt and become 

more resilient during future blooms.   
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Appendix 1  

Biogeographic regions in the PICES Convention Area 
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Appendix 2  

MEQ Workshop (W2) on “Conditions promoting extreme Pseudo-

nitzschia events in the eastern Pacific but not the western Pacific”  

at PICES-2016 

 

Co-Convenors:   Vera L. Trainer (U.S.A.) and Polina Kameneva (Russia) 

 

Abstract 

 

There is clear evidence of contrasting occurrence and impacts of the toxin-producing diatom, Pseudo-

nitzschia, between the western and eastern Pacific.  In 2015, a massive bloom spanning from California to 

Alaska, had major impacts on the economic viability shellfish industry and on wildlife health.  In contrast, 

Pseudo-nitzschia are not highly toxic and do not cause economic losses in the western Pacific. These data 

provide a unique opportunity for east–west Pacific comparisons to identify and rank those environmental 

factors that promote harmful algal bloom (HAB) success at different times. The recent PICES-funded 

workshop on HABs and Climate Change emphasized the importance of studying such extreme events to 

further our understanding of climate impacts. This workshop will focus on Pseudo-nitzschia—a diatom that 

historically had massive economic impacts in the eastern PICES member countries, with low or no impacts 

in the western Pacific. The workshop foundation will be an extension of the current dataset to the 1990s 

and earlier where available, with PICES participants pre-submitting available data on: HAB species 

presence, maximum abundance, toxicity, optimal conditions for growth, time of year, temperature range, 

salinity range, water clarity, nutrients, wind, river flow (flooding), and upwelling indices.  

 

Speakers:3  

Inna V. Stonik (Invited) 

Pseudo-nitzschia diversity, bloom events and their impacts in the North Pacific: An East-West comparison 

Nicola Haigh 

Pseudo-nitzschia species and domoic acid on the west coast of Vancouver Island, British Columbia, in 2015  

  

                                                           

3 See http://meetings.pices.int/publications/presentations/PICES-2016#workshop2 for individual presentations. 

http://meetings.pices.int/Publications/Presentations/PICES-2016/W2-Haigh.pdf
http://meetings.pices.int/publications/presentations/PICES-2016#workshop2
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Yuichi Kotaki 

Amnesic shellfish poisoning (ASP) potential in Japan  

Vera L. Trainer 

Pseudo-nitzschia and domoic acid on the US west coast: State of our knowledge and implications for the future 

Meredith L. Elliott 

Pseudo-nitzschia occurrence in the central California Current  

William P. Cochlan 

The effects of temperature and ocean acidification on the growth and toxicity of Pseudo-nitzschia australis from 

the California Current upwelling system  

Lin Yang 

Pseudo-nitzschia harmful algal blooms (HAB) in the coast of China  

Weol-Ae Lim 

Temporal changes and toxicity of Pseudo-nitzschia species in Korean coastal waters  

Tamara Russell 

Pseudo-nitzschia spp. and domoic acid in the waters of Haida Gwaii, British Columbia: A summary of 

occurrences and details on anthropogenic and environmental considerations  

Devan Johnson 

Pseudo-nitzschia species and domoic acid in southeast Vancouver Island, November 2015 to July 2016  

Anthony Odell 

Washington State Pacific coast Pseudo-nitzschia bloom of 2016  
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Appendix 3  

Olympic Region Harmful Algal Bloom (ORHAB) partnership sampling 

methods 

1. Collect whole water and net tow samples twice weekly (March 1–October 31) and once weekly 

(November 1–February 28).  The number of sample sites as well as sample frequency may be increased 

when Pseudo-nitzschia (PN) and domoic acid (DA) are present. One L of whole water is filtered onto a 

Nucleopore HA filter (0.45 m pore size) and frozen at –80oC until analyzed for particulate DA (pDA). 

2. Count settled whole water samples for total PN.  When >50,000 large PN cells L–1 or >1 million small 

PN cells L–1 are observed, State managers are notified that PN abundance is over the “action level” and 

a test for particulate DA is performed as soon as possible using the Mercury Science DAK-36 enzyme 

linked immunosorbent assay (ELISA).   If it is apparent from net tow samples that PN abundance may 

be above the action level, samplers may run an ELISA for pDA prior to counting PN from whole water 

which often need to be settled overnight. 

3. If ELISA results for pDA are >200 ng L–1, state managers are notified and an ELISA is run on shellfish 

samples (in Washington State, razor clam samples are the primary shellfish species analyzed because 

they can retain DA for many months). Composite razor clam samples (a composite of 12 individual 

clams when possible) are analyzed for DA using ELISA.  If ELISA results show elevated levels of DA 

in shellfish, additional tissue samples are also sent to the Public Health Lab for analysis of DA by high-

performance liquid chromatography (HPLC; the standard regulatory method).  

4. Mercury Science4 DA ELISAs allow individual particulate (cellular) DA filters to be tested in duplicate 

in strips – up to ~12 individual samples per ELISA plate because a full standard curve is analyzed with 

each sample at a total cost of ~$250.  Biosense5 ELISA can also be used, but these cost ~$500 per plate 

for fewer samples. The Mercury Science ELISA is not Association of Analytical Communities 

(AOAC) or Interstate Shellfish Sanitation Conference (ISSC) approved.  This method is used to screen 

for DA; positive tests must be confirmed by approved regulatory methods for detection of DA in 

shellfish.  Emergency closures can be enacted by using screening methods, while reopening of shellfish 

beds after closure requires testing using approved methods. 

5. Depending on the timing of the scheduled razor clam openers, the timing of the observed PN bloom 

and the ability of the coastal ORHAB samplers to run immediate ELISA, pre-emptive closures may be 

decided upon by the Washington State Department of Health and the Washington Department of Fish 

and Wildlife.  However, this is rare.  Closures are enacted when a value of 20 ppm or greater in razor 

clam is measured by HPLC. 

                                                           

4 http://www.mercuryscience.com/DA.html 
5 https://www.abraxiskits.com/products/algal-toxins/
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Clockwise from left:   Sign on a Washington State beach warning razor clam diggers of beach closures due 
to dangerous levels of domoic acid in shellfish, a recreational razor clam harvester digging clams with a 
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